时间:2021-07-01 10:21:17 帮助过:225人阅读
1、将采集到的彩色车牌图像转换成灰度图
2、灰度化的图像利用高斯平滑处理后,再对其进行中直滤波
3、使用Sobel算子对图像进行边缘检测
4、对二值化的图像进行腐蚀,膨胀,开运算,闭运算的形态学组合变换
5、对形态学变换后的图像进行轮廓查找,根据车牌的长宽比提取车牌
<!-- more -->
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gaussian = cv2.GaussianBlur(gray, (3, 3), 0, 0, cv2.BORDER_DEFAULT) median = cv2.medianBlur(gaussian, 5)
sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize = 3)
ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
# 膨胀和腐蚀操作的核函数 element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1)) element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (8, 6)) # 膨胀一次,让轮廓突出 dilation = cv2.dilate(binary, element2, iterations = 1) # 腐蚀一次,去掉细节 erosion = cv2.erode(dilation, element1, iterations = 1) # 再次膨胀,让轮廓明显一些 dilation2 = cv2.dilate(erosion, element2,iterations = 3)
1、查找车牌区域
def findPlateNumberRegion(img): region = [] # 查找轮廓 contours,hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 筛选面积小的 for i in range(len(contours)): cnt = contours[i] # 计算该轮廓的面积 area = cv2.contourArea(cnt) # 面积小的都筛选掉 if (area < 2000): continue # 轮廓近似,作用很小 epsilon = 0.001 * cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt, epsilon, True) # 找到最小的矩形,该矩形可能有方向 rect = cv2.minAreaRect(cnt) print "rect is: " print rect # box是四个点的坐标 box = cv2.cv.BoxPoints(rect) box = np.int0(box) # 计算高和宽 height = abs(box[0][1] - box[2][1]) width = abs(box[0][0] - box[2][0]) # 车牌正常情况下长高比在2.7-5之间 ratio =float(width) / float(height) if (ratio > 5 or ratio < 2): continue region.append(box) return region
2、用绿线绘出车牌区域和切割车牌
# 用绿线画出这些找到的轮廓 for box in region: cv2.drawContours(img, [box], 0, (0, 255, 0), 2) ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]] xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]] ys_sorted_index = np.argsort(ys) xs_sorted_index = np.argsort(xs) x1 = box[xs_sorted_index[0], 0] x2 = box[xs_sorted_index[3], 0] y1 = box[ys_sorted_index[0], 1] y2 = box[ys_sorted_index[3], 1] img_org2 = img.copy() img_plate = img_org2[y1:y2, x1:x2]
以上就是Python实现车牌定位及分割的详细内容,更多请关注Gxl网其它相关文章!