当前位置:Gxlcms > 数据库问题 > MongoDB聚合查询

MongoDB聚合查询

时间:2021-07-01 10:21:17 帮助过:7人阅读

的数据迁移到MongoDB上,于是我开始学习Mongo的一些CRUD操作,由于第一次接触NoSQL,还是有点不习惯。

先吐个槽,公司的Mongo版本是2.6.4,而用的java驱动包版本是超级老物2.4版。当时一个“如何对分组后的文档进行筛选”这个需求头痛了很久,虽然shell命令下可以使用Aggregation很方便地解决,但是java驱动包从2.9.0版本才开始支持该特性,我至今没有找到不用Aggregation解决上述需求的办法。只能推荐公司升级驱动包版本,希望没有后续的兼容问题。

Mongo2.2版本后开始支持Aggregation Pipelinehttp://docs.mongodb.org/manual/core/aggregation-pipeline/),而java驱动包从2.9.0版本才开始支持2.2的特性,2.9版本是12年发布的,mongodb09年就出现了,可见Mongojava的开发者似乎不怎么友好_

话扯到这里,接下来就对我这一周所学的Mongo做一个总结,错误之处还望指教 :-D

 

MongoDB目前提供了三个可以执行聚合操作的命令:aggregatemapReducegroup。三者在性能和操作的优劣比较见官网提供的表格http://docs.mongodb.org/manual/reference/aggregation-commands-comparison/,这里不再赘述细节,先说一下这三个函数的原型及底层封装的命令。

三者在性能和操作的优劣比较见官网提供的表格http://docs.mongodb.org/manual/reference/aggregation-commands-comparison/,这里不再赘述细节,先说一下这三个函数的原型及底层封装的命令。

函数名

函数原型

封装的命令

db.collection.group()

db.collection.group(

    {

        key,

        reduce,

        initial

        [, keyf]

        [, cond]

        [, finalize]

    }

)

db.runCommand(

    {

      group:

       {

        ns: <namespace>,

        key: <key>,

        $reduce: <reduce function>,

        $keyf: <key function>,

        cond: <query>,

        finalize: <finalize function>

       }

    }

)

db.collection.mapReduce()

db.collection.mapReduce(

    <map>,

    <reduce>,

    {

        out: <collection>,

        query: <document>,

        sort: <document>,

        limit: <number>,

        finalize: <function>,

        scope: <document>,

        jsMode: <boolean>,

        verbose: <boolean>

    }

)

db.runCommand(

    {

    mapReduce: <collection>,

    map: <function>,

    reduce: <function>,

    finalize: <function>,

    out: <output>,

    query: <document>,

    sort: <document>,

    limit: <number>,

    scope: <document>,

    jsMode: <boolean>,

    verbose: <boolean>

    }

)

db.collection.aggregate()

db.collection.aggregate(

    pipeline,

    options

)

db.runCommand(

    {

      aggregate: "<collection>",

      pipeline: [ <stage>, <...> ],

      explain: <boolean>,

      allowDiskUse: <boolean>,

      cursor: <document>

    }

)

 

 

好记性不如烂笔头,下面通过操作来了解这几个函数和命令

先准备SQL的测试数据,用来验证结果、比较SQL语句和NoSQL的异同,测试环境是mysql

先创建数据库表

create table dogroup (

_id int,

name varchar(45),

course varchar(45),

score int,

gender int,

primary key(_id)

);

插入数据

insert into dogroup (_id, name, course, score, gender) values (1, "N", "C", 5, 0);

insert into dogroup (_id, name, course, score, gender) values (2, "N", "O", 4, 0);

insert into dogroup (_id, name, course, score, gender) values (3, "A", "C", 5, 1);

insert into dogroup (_id, name, course, score, gender) values (4, "A", "O", 6, 1);

insert into dogroup (_id, name, course, score, gender) values (5, "A", "U", 8, 1);

insert into dogroup (_id, name, course, score, gender) values (6, "A", "R", 8, 1);

insert into dogroup (_id, name, course, score, gender) values (7, "A", "S", 7, 1);

insert into dogroup (_id, name, course, score, gender) values (8, "M", "C", 4, 0);

insert into dogroup (_id, name, course, score, gender) values (9, "M", "U", 7, 0);

insert into dogroup (_id, name, course, score, gender) values (10, "E", "C", 7, 1);

准备MongoDB测试数据

创建Collection(等同于SQL中的表,该行可以不写,Mongo会在插入数据时自动创建Collection

db.createCollection("dogroup") 

插入数据

db.dogroup.insert({"_id": 1,"name": "N",course: "C","score": 5,gender: 0})

db.dogroup.insert({"_id": 2,"name": "N",course: "O","score": 4,gender: 0})

db.dogroup.insert({"_id": 3,"name": "A",course: "C","score": 5,gender: 1})

db.dogroup.insert({"_id": 4,"name": "A",course: "O","score": 6,gender: 1})

db.dogroup.insert({"_id": 5,"name": "A",course: "U","score": 8,gender: 1})

db.dogroup.insert({"_id": 6,"name": "A",course: "R","score": 8,gender: 1})

db.dogroup.insert({"_id": 7,"name": "A",course: "S","score": 7,gender: 1})

db.dogroup.insert({"_id": 8,"name": "M",course: "C","score": 4,gender: 0})

db.dogroup.insert({"_id": 9,"name": "M",course: "U","score": 7,gender: 0})

db.dogroup.insert({"_id": 10,"name": "E",course: "C","score": 7,gender: 1})

 

以下操作可能逻辑上没有实际意义,主要是帮助熟悉指令

1、查询出共有几门课程(course),返回的格式为“课程名、数量”

SQL写法:select course as ‘课程名‘, count(*) as ‘数量‘ from dogroup group by course;

MongoDB写法:

group方式

db.dogroup.group({

key : { course: 1 },

initial : { count: 0 },

reduce : function Reduce(curr, result) {

    result.count += 1;

},

finalize : function Finalize(out) {

    return {"课程名": out.

人气教程排行