当前位置:Gxlcms > 数据库问题 > MongoDB Data Models 数据结构设计

MongoDB Data Models 数据结构设计

时间:2021-07-01 10:21:17 帮助过:17人阅读

1 数据建模介绍

MongoDB的数据结构很灵活,不强制要求数据结构.但是通常一个集合内部使用相同的结构.

数据建模的关键是平衡应用的需求和数据库执行和数据检索模型的性能.设计数据模型时,要考虑数据的使用情况和数据自身的结构

1.1 文档结构

设计MongoDB应用的数据模型的关键在于文档结构和应用程序如何表示数据之间的关系,这有两种工具允许应用程序来表示这些关系:引用和嵌入型文档.

1.1.1 引用:


类似关系型数据库中的外键的引用,通常不同的集合中互相引用_id字段

技术分享

1.1.2 内嵌数据:


某个字段的值为BSON或者某个字段值为数组,数组中的每个值为BSON

技术分享

1.2 写操作的原子性

MongoDB在文档级别的写操作是原子性的,没有任何单个修改多条文档,或者多个集合的操作是原子性的.包含嵌入型数据的非标准化数据将其所表示的实体的所有的相关数据在单个文档中保存,这使得对这个实体的操作变为对这个文档的原子性操作.标准化数据的过程将数据跨多个集合存储,这使得每次对实体的修改需要多次写操作,并且多次写操作不是原子性的.

然而,方便原子操作的结构也许会限制应用程序使用数据或者限制修改应用程序.


1.3 文档增长

一些更新操作,比如向数组中追加元素或者向文档中添加字段,都会导致文档大小增加.
如果文档大小超过了分配给它的空间,MongoDB将重新在硬盘上为其分配空间.这种增长将影响你选择使用标准化数据还是非标准化数据


1.4 数据的使用和性能

当设计数据模型的时候,考虑应用程序将怎样使用你的数据库.比如说:如果你的应用程序只是使用最近插入的文档,考虑使用Capped Collections,或者你的应用程序主要是读取操作,为常用的查询添加索引来改善性能.


2 数据建模概念

2.1 数据模型设计

高效的数据模型迎合应用程序的需求.文档结构考虑的关键因素是使用嵌入型文档还是使用引用

2.1.1嵌入型数据模型

技术分享

嵌入型文档允许一个文档中保存多条相关信息应用程序可以执行更少的查询和更新操作.

以下情况使用嵌入型文档:
1.实体间有"包含"的关系
2.实体间有一对多的关系.在这种关系中,多的一方总是在一的一方作为上下文或者作为父文档的时候出现.



嵌入型文档读操作性能较好,单一数据库的时候检索数据快.update相关数据的操作是原子性的.

缺点:嵌入型文档导致文档创建后大小的增长.进一步说,文档必须小于BSON文档的最大值限制

与嵌入型文档进行交互,需要使用"."操作符来访问嵌入型文档


2.1.2标准化数据模型

标准化数据使用引用来描述文档间的关系

技术分享

以下情况使用标准化数据模型:
1.嵌入型文档模型导致数据重复的同时,查询性能优势不能弥补数据重复带来的不足的时候
2.用以表示更加复杂的多对多的关系
3.用以建模多层的数据集


引用比嵌入更加灵活.然而随之而来的是应用程序需要查询并解析相关的引用.换句话说,标准化数据模型会导致程序和MongoDB之间更多的通信.

2.2 操作的因素和数据模型

需要权衡考虑数据自身和数据库.


2.2.1 文档增长

数组的push操作,和增加新的 字段将会导致文档大小的增长.超过文档已分配的空间大小的时候,MongoDB将会为其重新分配空间,这将导致比原地更新花费更多的时间,同时也会导致碎片化存储.虽然MongoDB自动会在文档之间添加空隙以减少类似的重新分配,建立模型的时候需要尽可能的避免文档增长

2.2.2 原子操作

上面已有介绍,略

2.2.3 Sharding

MongoDB使用Sharding技术来提供水平的缩放.这些集群支持大数据集的开发和高吞吐量的操作.Sharding允许用户将一个数据库内的一个集合,通过mongod的实例或者shards的标号,分散到多个集合文档中

2.2.4 索引

使用索引来改善查询性能.在某些字段上建立索引,通常是在这些字段上的查询返回排序的结果的时候.MongoDB自动在_id字段上建立索引.

建立索引时要考虑以下内容:
1.每个索引需要至少8KB的空间
2.建立索引会对写操作有负面影响,对于写操作很多的集合来说,索引的所花费的代价很高因为每次插入的操作都必须更新所有的索引
3.对于读操作较多的集合来说,索引通常是有益的.索引不影响没有建立索引的读操作.
4.当激活的时候,每个索引都会消耗硬盘和内存空间.这些开销对于容量计划,特别是超过工作集的大小的考虑,是极为关键的,应该追踪的.

2.2.5 大量的集合

在某些情况下,需要选择将相关的信息存储字多个集合中而不是一个集合中,比如不同的log内容存储在不同的log集合中


技术分享


通常大量的集合没有性能的减弱而是性能的优化.不同的集合对于高吞吐量的批处理进程是非常重要的.

当使用有大量集合的数据模型的时候,考虑以下内容:
1.每个集合至少需要即k空间
2.每个索引,包括_id上的索引,需要至少8KB空间
3.对于数据库来说,一个,命名空间文件存储着该数据库所有的元数据,每个索引和集合在这个命名空间文件中有其自己的入口.
4.MongoDB对于命名空间的数量有限制.你也许想知道当前的命名空间数,以决定数据库还可以支持多少额外的 命名空间,查询当前命名空间的数量,在mongo的shell中运行:db.system.namespaces.count()


2.2.6 数据生命周期管理

数据建模的时候应该考虑数据的生命周期管理.
如果你的应用程序需要使用限定时间段内的数据,考虑使用TTL属性.
另外,如果你的应用程序仅仅使用最近插入的文档,考虑使用Capped Collections.它提供了对于文档的FIFO(也就是队列式)的管理,有效的支持哪些依赖于插入顺序的插入和读取操作.

2.3 GridFS

GridFS是对于超过BSON文档大小限制16M的文档存储和检索的规范.
不是将文件存储在单个文档中,GridFS将文件分割为多个部分,或者数据库,将每个数据块作为单独的文档进行存储.默认的GridFS限制数据块大小为255k.GridFS使用两个集合来存储文件.一个结合存储文件的数据块,另一个存储文件的元数据信息.

当你查询GridFS存储的文件的时候,驱动,或者客户端将重新组装你需要的数据块.你可以对存储在GridFS中的文件执行多种查询.你也可以获取文件的某一块的信息,这使得你可以跳到视频或者音频的中间部分.

GridFS不仅仅对于存储大小超过16M的文件有用,它可以用于存储任何你在访问时不想将整个文件加载到内存中的文件



MongoDB Data Models 数据结构设计

标签:mongodb   model   concepts   结构   设计   

人气教程排行