当前位置:Gxlcms > 数据库问题 > spark1.4加载mysql数据 创建Dataframe及join操作连接方法问题

spark1.4加载mysql数据 创建Dataframe及join操作连接方法问题

时间:2021-07-01 10:21:17 帮助过:2人阅读

org.apache.spark.sql.DataFrame import org.apache.spark.{SparkContext, SparkConf} import org.apache.spark.sql.{SaveMode, DataFrame} import scala.collection.mutable.ArrayBuffer import org.apache.spark.sql.hive.HiveContext import java.sql.DriverManager import java.sql.Connection val sqlContext = new HiveContext(sc) val mySQLUrl = "jdbc:mysql://10.180.211.100:3306/appcocdb?user=appcoc&password=Asia123"

val CI_MDA_SYS_TABLE = sqlContext.jdbc(mySQLUrl,"CI_MDA_SYS_TABLE").cache()

val CI_MDA_SYS_TABLE_COLUMN = sqlContext.jdbc(mySQLUrl,"CI_MDA_SYS_TABLE_COLUMN").cache()

val CI_LABEL_EXT_INFO = sqlContext.jdbc(mySQLUrl,"CI_LABEL_EXT_INFO").cache()

val CI_LABEL_INFO = sqlContext.jdbc(mySQLUrl,"CI_LABEL_INFO").cache()

val CI_APPROVE_STATUS = sqlContext.jdbc(mySQLUrl,"CI_APPROVE_STATUS").cache()

val DIM_COC_LABEL_COUNT_RULES = sqlContext.jdbc(mySQLUrl,"DIM_COC_LABEL_COUNT_RULES").cache()

 

 

根据多表ID进行关联

val labels = CI_MDA_SYS_TABLE.join(CI_MDA_SYS_TABLE_COLUMN,CI_MDA_SYS_TABLE("TABLE_ID") === CI_MDA_SYS_TABLE_COLUMN("TABLE_ID"),"inner").cache()
labels.join(CI_LABEL_EXT_INFO,CI_MDA_SYS_TABLE_COLUMN("COLUMN_ID") === CI_LABEL_EXT_INFO("COLUMN_ID"),"inner").cache()
labels.join(CI_LABEL_INFO,CI_LABEL_EXT_INFO("LABEL_ID") === CI_LABEL_INFO("LABEL_ID"),"inner").cache()
labels.join(CI_APPROVE_STATUS,CI_LABEL_INFO("LABEL_ID") === CI_APPROVE_STATUS("RESOURCE_ID"),"inner").cache()
labels.filter(CI_APPROVE_STATUS("CURR_APPROVE_STATUS_ID") === 107 and (CI_LABEL_INFO("DATA_STATUS_ID") === 1 || CI_LABEL_INFO("DATA_STATUS_ID") === 2) and (CI_LABEL_EXT_INFO("COUNT_RULES_CODE") isNotNull) and CI_MDA_SYS_TABLE("UPDATE_CYCLE") === 1).cache()

于是噼里啪啦的报错了,在第三个join时找不到ID了,这个问题很诡异。。。:

技术分享

无奈了。。于是使用官网API spark1.4的指定方法尝试

val labels = CI_MDA_SYS_TABLE.join(CI_MDA_SYS_TABLE_COLUMN,"TABLE_ID")
labels.join(CI_LABEL_EXT_INFO,"COLUMN_ID")
labels.join(CI_LABEL_INFO,"LABEL_ID")
labels.join(CI_APPROVE_STATUS).WHERE($"LABEL_ID"===$"RESOURCE_ID")

于是又噼里啪啦的,还是找不到ID。。。。

技术分享

 

最后无奈。。就用原来的方法 创建软连接,加载数据,发现可以。。这我就不明白了。。。

val CI_MDA_SYS_TABLE_DDL = s"""
             CREATE TEMPORARY TABLE CI_MDA_SYS_TABLE
             USING org.apache.spark.sql.jdbc
             OPTIONS (
               url    ‘${mySQLUrl}‘,
               dbtable     ‘CI_MDA_SYS_TABLE‘
             )""".stripMargin

     sqlContext.sql(CI_MDA_SYS_TABLE_DDL)
     val CI_MDA_SYS_TABLE = sql("SELECT * FROM CI_MDA_SYS_TABLE").cache()
    //val CI_MDA_SYS_TABLE  = sqlContext.jdbc(mySQLUrl,"CI_MDA_SYS_TABLE").cache()

    val CI_MDA_SYS_TABLE_COLUMN_DDL = s"""
            CREATE TEMPORARY TABLE CI_MDA_SYS_TABLE_COLUMN
            USING org.apache.spark.sql.jdbc
            OPTIONS (
              url    ‘${mySQLUrl}‘,
              dbtable     ‘CI_MDA_SYS_TABLE_COLUMN‘
            )""".stripMargin

    sqlContext.sql(CI_MDA_SYS_TABLE_COLUMN_DDL)
    val CI_MDA_SYS_TABLE_COLUMN = sql("SELECT * FROM CI_MDA_SYS_TABLE_COLUMN").cache()
    //val CI_MDA_SYS_TABLE_COLUMN  = sqlContext.jdbc(mySQLUrl,"CI_MDA_SYS_TABLE_COLUMN").cache()

.........

技术分享

技术分享

最终问题是解决了。。可是 为什么直接加载不行呢。。还有待考究。

 

附带一个问题的解决 如果啊报这种错误

15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_3_piece0 on cbg6aocdp9:49897 in memory (size: 8.4 KB, free: 1060.3 MB)
15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_3_piece0 on cbg6aocdp5:45978 in memory (size: 8.4 KB, free: 1060.3 MB)
15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_2_piece0 on 10.176.238.11:38968 in memory (size: 8.2 KB, free: 4.7 GB)
15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_2_piece0 on cbg6aocdp4:55199 in memory (size: 8.2 KB, free: 1060.3 MB)
15/11/19 10:57:12 INFO ContextCleaner: Cleaned shuffle 0
15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_1_piece0 on 10.176.238.11:38968 in memory (size: 6.5 KB, free: 4.7 GB)
15/11/19 10:57:12 INFO BlockManagerInfo: Removed broadcast_1_piece0 on cbg6aocdp8:55706 in memory (size: 6.5 KB, free: 1060.3 MB)
TARGET_TABLE_CODE:========================IT03
Exception in thread "main" java.lang.RuntimeException: Error in configuring object
        at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109)
        at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75)
        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133)
        at org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:190)
        at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:203)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
        at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
        at scala.Option.getOrElse(Option.scala:120)
        at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
        at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:121)
        at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:125)
        at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1269)
        at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1203)
        at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1262)
        at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:176)
        at org.apache.spark.sql.DataFrame.show(DataFrame.scala:331)
        at main.asiainfo.coc.impl.IndexMakerObj$$anonfun$makeIndexsAndLabels$1.apply(IndexMakerObj.scala:218)
        at main.asiainfo.coc.impl.IndexMakerObj$$anonfun$makeIndexsAndLabels$1.apply(IndexMakerObj.scala:137)
        at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
        at main.asiainfo.coc.impl.IndexMakerObj$.makeIndexsAndLabels(IndexMakerObj.scala:137)
        at main.asiainfo.coc.CocDss$.main(CocDss.scala:23)
        at main.asiainfo.coc.CocDss.main(CocDss.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.reflect.InvocationTargetException
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)
        ... 71 more
Caused by: java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.LzoCodec not found.
        at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:135)
        at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:175)
        at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45)
        ... 76 more
Caused by: java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec not found
        at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2018)
        at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:128)
        ... 78 more

一看最后就知道 是hadoop数据压缩格式为lzo spark要想读取 必须引入hadoop lzo的jar包

技术分享

 

spark1.4加载mysql数据 创建Dataframe及join操作连接方法问题

标签:

人气教程排行