时间:2021-07-01 10:21:17 帮助过:1人阅读
mysql> select * from treenodes;
+----+----------+------+
| id | nodename | pid |
+----+----------+------+
| 1 | A | 0 |
| 2 | B | 1 |
| 3 | C | 1 |
| 4 | D | 2 |
| 5 | E | 2 |
| 6 | F | 3 |
| 7 | G | 6 |
| 8 | H | 0 |
| 9 | I | 8 |
| 10 | J | 8 |
| 11 | K | 8 |
| 12 | L | 9 |
| 13 | M | 9 |
| 14 | N | 12 |
| 15 | O | 12 |
| 16 | P | 15 |
| 17 | Q | 15 |
+----+----------+------+
17 rows in set (0.00 sec)
树形图如下
1:A
+-- 2:B
| +-- 4:D
| +-- 5:E
+-- 3:C
+-- 6:F
+-- 7:G
8:H
+-- 9:I
| +-- 12:L
| | +--14:N
| | +--15:O
| | +--16:P
| | +--17:Q
| +-- 13:M
+-- 10:J
+-- 11:K
方法一:利用函数来得到所有子节点号。
创建一个function getChildLst, 得到一个由所有子节点号组成的字符串.
delimiter // CREATE FUNCTION `getChildList`(rootId INT) RETURNS varchar(1000) BEGIN DECLARE sTemp VARCHAR(1000); DECLARE sTempChd VARCHAR(1000); SET sTemp = ‘$‘; SET sTempChd =cast(rootId as CHAR); WHILE sTempChd is not null DO SET sTemp = concat(sTemp,‘,‘,sTempChd); SELECT group_concat(id) INTO sTempChd FROM treeNodes where FIND_IN_SET(pid,sTempChd)>0; END WHILE; RETURN sTemp; END // delimiter ;
获取所有父节点:
delimiter // CREATE FUNCTION `getParentList`(rootId INT) RETURNS varchar(1000) BEGIN DECLARE sParentList varchar(1000); DECLARE sParentTemp varchar(1000); SET sParentTemp =cast(rootId as CHAR); WHILE sParentTemp is not null DO IF (sParentList is not null) THEN SET sParentList = concat(sParentTemp,‘,‘,sParentList); ELSE SET sParentList = concat(sParentTemp); END IF; SELECT group_concat(pid) INTO sParentTemp FROM treeNodes where FIND_IN_SET(id,sParentTemp)>0; END WHILE; RETURN sParentList; END // delimiter ; /*获取父节点*/ /*调用: 1、select getParentList(6) id; 2、select * From user_role where FIND_IN_SET(id, getParentList(2));*/
select getParentList(4);
使用我们直接利用find_in_set函数配合这个getChildlst来查找
mysql> select getChildList(1);
+-----------------+
| getChildLst(1) |
+-----------------+
| $,1,2,3,4,5,6,7 |
+-----------------+
1 row in set (0.00 sec)
mysql> select * from treeNodes
-> where FIND_IN_SET(id, getChildList(1));
+----+----------+------+
| id | nodename | pid |
+----+----------+------+
| 1 | A | 0 |
| 2 | B | 1 |
| 3 | C | 1 |
| 4 | D | 2 |
| 5 | E | 2 |
| 6 | F | 3 |
| 7 | G | 6 |
+----+----------+------+
7 rows in set (0.01 sec)
mysql> select * from treeNodes
-> where FIND_IN_SET(id, getChildList(3));
+----+----------+------+
| id | nodename | pid |
+----+----------+------+
| 3 | C | 1 |
| 6 | F | 3 |
| 7 | G | 6 |
+----+----------+------+
3 rows in set (0.01 sec)
优点: 简单,方便,没有递归调用层次深度的限制 (max_sp_recursion_depth,最大255) ;
缺点:长度受限,虽然可以扩大 RETURNS varchar(1000),但总是有最大限制的。
MySQL目前版本( 5.1.33-community)中还不支持function 的递归调用。
方法二:利用临时表和过程递归
创建存储过程如下。createChildLst 为递归过程,showChildLst为调用入口过程,准备临时表及初始化。
DELIMITER // # 入口过程 CREATE PROCEDURE showChildLst (IN rootId INT) BEGIN CREATE TEMPORARY TABLE IF NOT EXISTS tmpLst (sno INT PRIMARY KEY AUTO_INCREMENT,id INT,depth INT); DELETE FROM tmpLst; CALL createChildLst(rootId,0); SELECT tmpLst.*,treeNodes.* FROM tmpLst,treeNodes WHERE tmpLst.id=treeNodes.id ORDER BY tmpLst.sno; END; // DELIMITER ;
DELIMITER // # 递归过程 CREATE PROCEDURE createChildLst (IN rootId INT,IN nDepth INT) BEGIN DECLARE done INT DEFAULT 0; DECLARE b INT; DECLARE cur1 CURSOR FOR SELECT id FROM treeNodes WHERE pid=rootId; DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1; INSERT INTO tmpLst VALUES (NULL,rootId,nDepth); OPEN cur1; FETCH cur1 INTO b; WHILE done=0 DO CALL createChildLst(b,nDepth+1); FETCH cur1 INTO b; END WHILE; CLOSE cur1; END; // DELIMITER ;
调用时传入结点
mysql> call showChildLst(1);
+-----+------+-------+----+----------+------+
| sno | id | depth | id | nodename | pid |
+-----+------+-------+----+----------+------+
| 4 | 1 | 0 | 1 | A | 0 |
| 5 | 2 | 1 | 2 | B | 1 |
| 6 | 4 | 2 | 4 | D | 2 |
| 7 | 5 | 2 | 5 | E | 2 |
| 8 | 3 | 1 | 3 | C | 1 |
| 9 | 6 | 2 | 6 | F | 3 |
| 10 | 7 | 3 | 7 | G | 6 |
+-----+------+-------+----+----------+------+
7 rows in set (0.13 sec)
Query OK, 0 rows affected, 1 warning (0.14 sec)
mysql>
mysql> call showChildLst(3);
+-----+------+-------+----+----------+------+
| sno | id | depth | id | nodename | pid |
+-----+------+-------+----+----------+------+
| 1 | 3 | 0 | 3 | C | 1 |
| 2 | 6 | 1 | 6 | F | 3 |
| 3 | 7 | 2 | 7 | G | 6 |
+-----+------+-------+----+----------+------+
3 rows in set (0.11 sec)
Query OK, 0 rows affected, 1 warning (0.11 sec)
depth 为深度,这样可以在程序进行一些显示上的格式化处理。类似于oracle中的 level 伪列。sno 仅供排序控制。这样你还可以通过临时表tmpLst与数据库中其它表进行联接查询。
MySQL中你可以利用系统参数 max_sp_recursion_depth 来控制递归调用的层数上限。如下例设为12.
mysql> set max_sp_recursion_depth=12;
Query OK, 0 rows affected (0.00 sec)
优点 : 可以更灵活处理,及层数的显示。并且可以按照树的遍历顺序得到结果。
缺点 : 递归有255的限制。
方法三:利用中间表和过程
(本方法由yongyupost2000提供样子改编)
创建存储过程如下。由于MySQL中不允许在同一语句中对临时表多次引用,只以使用普通表tmpLst来实现了。当然你的程序中负责在用完后清除这个表。
DELIMITER // DROP PROCEDURE IF EXISTS showTreeNodes_yongyupost2000// CREATE PROCEDURE showTreeNodes_yongyupost2000 (IN rootid INT) BEGIN DECLARE LEVEL INT ; DROP TABLE IF EXISTS tmpLst; CREATE TABLE tmpLst ( id INT, nLevel INT, sCort VARCHAR(8000) ); SET LEVEL=0 ; INSERT INTO tmpLst SELECT id,LEVEL,ID FROM treeNodes WHERE PID=rootid; WHILE ROW_COUNT()>0 DO SET LEVEL=LEVEL+1 ; INSERT INTO tmpLst SELECT A.ID,LEVEL,CONCAT(B.sCort,A.ID) FROM treeNodes A,tmpLst B WHERE A.PID=B.ID AND B.nLevel=LEVEL-1 ; END WHILE; SELECT tmpLst.*,treeNodes.* FROM tmpLst,treeNodes WHERE tmpLst.id=treeNodes.id ORDER BY tmpLst.id; END; // DELIMITER ;
CALL showTreeNodes_yongyupost2000(1);
执行完后会产生一个tmpLst表,nLevel 为节点深度,sCort 为排序字段。
使用方法
SELECT concat(SPACE(B.nLevel*2),‘+--‘,A.nodename)
FROM treeNodes A,tmpLst B
WHERE A.ID=B.ID
ORDER BY B.sCort;
+--------------------------------------------+
| concat(SPACE(B.nLevel*2),‘+--‘,A.nodename) |
+--------------------------------------------+
| +--A |
| +--B |
| +--D |
| +--E |
| +--C |
| +--F |
| +--G |
| +--H |
| +--J |
| +--K |
| +--I |
| +--L |
| +--N |
| +--O |
| +--P |
| +--Q |
| +--M |
+--------------------------------------------+
17 rows in set (0.00 sec)
优点 : 层数的显示。并且可以按照树的遍历顺序得到结果。没有递归限制。
缺点 : MySQL中对临时表的限制,只能使用普通表,需做事后清理。
以上是几个在MySQL中用存储过程比较简单的实现方法。
MySQL中进行树状所有子节点的查询【转】
标签: