当前位置:Gxlcms > 数据库问题 > Mongodb

Mongodb

时间:2021-07-01 10:21:17 帮助过:3人阅读

MongoDB命令行操作   本文专门介绍MongoDB的命令行操作。其实,这些操作在MongoDB官网提供的Quick Reference上都有,但是英文的,为了方便,这里将其稍微整理下,方便查阅。   这里用来做测试的是远端(10.77.20.xx)的Mongo数据库。   1、登录和退出   mongo命令直接加MongoDB服务器的IP地址(比如:mongo 10.77.20.xx),就可以利用Mongo的默认端口号(27017)登陆Mongo,然后便能够进行简单的命令行操作。 至于退出,直接exit,然后回车就好了。   [plain]  $ mongo 10.77.20.xx   MongoDB shell version: 2.0.4   connecting to: 10.77.20.xx/test   > show collections   > exit   bye   从以上可以看出,登录后mongo会自动连上一个名为test的数据库。如果这个数据库不存在,那么mongo会自动建立一个名为test的数据库。上面的例子,由于Mongo服务器上没有名为test的db,因此,mongo新建了一个空的名为test的db。其中,没有任何collection。 2、database级操作   [plain]  2.1 查看服务器上的数据库   > show dbs   admin   (empty)   back_up (empty)   blogtest    0.203125GB   local   44.056640625GB   test    (empty)      2.2 切换数据库   切换到blogtest数据库(从默认的test数据库)   > use blogtest   switched to db blogtest   mongo中,db代表当前使用的数据库。这样,db就从原来的test,变为现在的blogtest数据库。      2.3 查看当前数据库中的所有集合   > show collections   book   system.indexes   user      2.4 创建数据库   mongo中创建数据库采用的也是use命令,如果use后面跟的数据库名不存在,那么mongo将会新建该数据库。不过,实际上只执行use命令后,mongo是不会新建该数据库的,直到你像该数据库中插入了数据。   > use test2   switched to db test2   > show dbs   admin   (empty)   back_up (empty)   blogtest    0.203125GB   local   44.056640625GB   test    (empty)   到这里并没有看到刚才新建的test2数据库。   > db.hello.insert({"name":"testdb"})   该操作会在test2数据库中新建一个hello集合,并在其中插入一条记录。   > show dbs   admin   (empty)   back_up (empty)   blogtest    0.203125GB   local   44.056640625GB   test    (empty)   test2   0.203125GB   > show collections   hello   system.indexes   这样,便可以看到mongo的确创建了test2数据库,其中有一个hello集合。      2.5 删除数据库   > db.dropDatabase()   { "dropped" : "test2", "ok" : 1 }   > show dbs   admin   (empty)   back_up (empty)   blogtest    0.203125GB   local   44.056640625GB   test    (empty)      2.6 查看当前数据库   > db   test2   可以看出删除test2数据库之后,当前的db还是指向它,只有当切换数据库之后,test2才会彻底消失。   3、collection级操作   [plain]  3.1 新建collection   > db.createCollection("Hello")   { "ok" : 1 }   > show collections   Hello   system.indexes   从上面2.4也可以看出,直接向一个不存在的collection中插入数据也能创建一个collection。   > db.hello2.insert({"name":"lfqy"})   > show collections   Hello   hello2   system.indexes      3.2 删除collection   > db.Hello.drop()   true   返回true说明删除成功,false说明没有删除成功。   > db.hello.drop()   false   不存在名为hello的collection,因此,删除失败。      3.3 重命名collection   将hello2集合重命名为HELLO   > show collections   hello2   system.indexes   > db.hello2.renameCollection("HELLO")   { "ok" : 1 }   > show collections   HELLO   system.indexes      3.4 查看当前数据库中的所有collection   >show collections      3.5 建立索引在HELLO集合上,建立对ID字段的索引,1代表升序。   >db.HELLO.ensureIndex({ID:1})   4、Record级的操作 这一小节从这里开始,我们用事先存在的blogtest数据库做测试,其中有两个Collection,一个是book,另一个是user。 4.1 插入操作   [plain]  4.1.1 向user集合中插入两条记录   > db.user.insert({‘name‘:‘Gal Gadot‘,‘gender‘:‘female‘,‘age‘:28,‘salary‘:11000})   > db.user.insert({‘name‘:‘Mikie Hara‘,‘gender‘:‘female‘,‘age‘:26,‘salary‘:7000})      4.1.2 同样也可以用save完成类似的插入操作   > db.user.save({‘name‘:‘Wentworth Earl Miller‘,‘gender‘:‘male‘,‘age‘:41,‘salary‘:33000})   4.2 查找操作   4.2.1 查找集合中的所有记录 [plain]  > db.user.find()   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13 }   4.2.2 查找集合中的符合条件的记录 [plain]  (1)单一条件   a)Exact Equal:   查询age为了23的数据   > db.user.find({"age":23})   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   b)Great Than:   查询salary大于5000的数据   > db.user.find({salary:{$gt:5000}})   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   c)Fuzzy Match   查询name中包含‘a‘的数据   > db.user.find({name:/a/})   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   查询name以G打头的数据   > db.user.find({name:/^G/})   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }      (2)多条件"与"   查询age小于30,salary大于6000的数据   > db.user.find({age:{$lt:30},salary:{$gt:6000}})   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }      (3)多条件"或"   查询age小于25,或者salary大于10000的记录   > db.user.find({$or:[{salary:{$gt:10000}},{age:{$lt:25}}]})   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   4.2.3 查询第一条记录 将上面的find替换为findOne()可以查找符合条件的第一条记录。 [plain]  将上面的find替换为findOne()可以查找符合条件的第一条记录。   > db.user.findOne({$or:[{salary:{$gt:10000}},{age:{$lt:25}}]})   {       "_id" : ObjectId("52442736d8947fb501000001"),       "name" : "lfqy",       "gender" : "male",       "age" : 23,       "salary" : 15   }   4.2.4 查询记录的指定字段 [plain]  查询user集合中所有记录的name,age,salary,sex_orientation字段   > db.user.find({},{name:1,age:1,salary:1,sex_orientation:true})   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "age" : 23, "salary" : 15 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   注意:这里的1表示显示此列的意思,也可以用true表示。   4.2.5 查询指定字段的数据,并去重。 [plain]  查询gender字段的数据,并去掉重复数据   > db.user.distinct(‘gender‘)   [ "male", "female" ]   4.2.6 对查询结果集的操作 [plain]  (1)Pretty Print   为了方便,mongo也提供了pretty print工具,db.collection.pretty()或者是db.collection.forEach(printjson)   > db.user.find().pretty()   {       "_id" : ObjectId("52442736d8947fb501000001"),       "name" : "lfqy",       "gender" : "male",       "age" : 23,       "salary" : 15   }   {       "_id" : ObjectId("52453cfb25e437dfea8fd4f4"),       "name" : "Gal Gadot",       "gender" : "female",       "age" : 28,       "salary" : 11000   }   {       "_id" : ObjectId("52453d8525e437dfea8fd4f5"),       "name" : "Mikie Hara",       "gender" : "female",       "age" : 26,       "salary" : 7000   }   {       "_id" : ObjectId("52453e2125e437dfea8fd4f6"),       "name" : "Wentworth Earl Miller",       "gender" : "male",       "age" : 41,       "salary" : 33000   }   {       "_id" : ObjectId("52454155d8947fb70d000000"),       "name" : "not known",       "sex_orientation" : "male",       "age" : 13   }   (2)指定结果集显示的条目   a)显示结果集中的前3条记录   > db.user.find().limit(3)   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   b)查询第1条以后的所有数据   > db.user.find().skip(1)   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   c)对结果集排序   升序   > db.user.find().sort({salary:1})   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   降序   > db.user.find().sort({salary:-1})   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52442736d8947fb501000001"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 15 }   4.2.7 统计查询结果中记录的条数 [plain]  (1)统计集合中的所有记录条数   > db.user.find().count()   5   (2)查询符合条件的记录数   查询salary小于4000或大于10000的记录数   > db.user.find({$or: [{salary: {$lt:4000}}, {salary: {$gt:10000}}]}).count()   4   4.3 删除操作   4.3.1 删除整个集合中的所有数据 [plain]  > db.test.insert({name:"asdf"})   > show collections   book   system.indexes   test   user   到这里新建了一个集合,名为test。   删除test中的所有记录。   > db.test.remove()   PRIMARY> show collections   book   system.indexes   test   user   > db.test.find()   可见test中的记录全部被删除。   注意db.collection.remove()和drop()的区别,remove()只是删除了集合中所有的记录,而集合中原有的索引等信息还在,而drop()则把集合相关信息整个删除(包括索引)。   4.3.2 删除集合中符合条件的所有记录 [plain]  > db.user.remove({name:‘lfqy‘})   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }      > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455cc825e437dfea8fd4f8"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 }   { "_id" : ObjectId("52455d8a25e437dfea8fd4fa"), "name" : "1", "gender" : "female", "age" : 28, "salary" : 1 }   > db.user.remove( {salary :{$lt:10}})   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   4.3.3  删除集合中符合条件的一条记录 [plain]  > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455de325e437dfea8fd4fb"), "name" : "1", "gender" : "female", "age" : 28, "salary" : 1 }   { "_id" : ObjectId("52455de925e437dfea8fd4fc"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 }   > db.user.remove({salary :{$lt:10}},1)   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455de925e437dfea8fd4fc"), "name" : "2", "gender" : "female", "age" : 28, "salary" : 2 }   当然,也可以是db.user.remove({salary :{$lt:10}},true)   4.4 更新操作 4.4.1 赋值更新 db.collection.update(criteria, objNew, upsert, multi ) criteria:update的查询条件,类似sql update查询内where后面的 objNew:update的对象和一些更新的操作符(如$,$inc...)等,也可以理解为sql update查询内set后面的。 upsert : 如果不存在update的记录,是否插入objNew,true为插入,默认是false,不插入。 multi : mongodb默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件查出来多条记录全部更新。   [plain]  > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 28, "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 28, "salary" : 2 }   > db.user.update({name:‘lfqy‘},{$set:{age:23}},false,true)   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 }   db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 }   > db.user.update({name:‘lfqy1‘},{$set:{age:23}},true,true)   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "name" : "lfqy", "gender" : "male", "age" : 23, "salary" : 2 }   { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" }   > db.user.update({name:‘lfqy‘},{$set:{interest:"NBA"}},false,true)   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 }   4.4.2 增值更新 [plain]  > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11000 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7000 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 }   > db.user.update({gender:‘female‘},{$inc:{salary:50}},false,true)   > db.user.find()   { "_id" : ObjectId("52453cfb25e437dfea8fd4f4"), "name" : "Gal Gadot", "gender" : "female", "age" : 28, "salary" : 11050 }   { "_id" : ObjectId("52453d8525e437dfea8fd4f5"), "name" : "Mikie Hara", "gender" : "female", "age" : 26, "salary" : 7050 }   { "_id" : ObjectId("52453e2125e437dfea8fd4f6"), "name" : "Wentworth Earl Miller", "gender" : "male", "age" : 41, "salary" : 33000 }   { "_id" : ObjectId("52454155d8947fb70d000000"), "name" : "not known", "sex_orientation" : "male", "age" : 13, "salary" : 30000 }   { "_id" : ObjectId("5245610881c83a5bf26fc285"), "age" : 23, "name" : "lfqy1" }   { "_id" : ObjectId("52455f8925e437dfea8fd4fd"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 1 }   { "_id" : ObjectId("5245607525e437dfea8fd4fe"), "age" : 23, "gender" : "male", "interest" : "NBA", "name" : "lfqy", "salary" : 2 }   关于更新操作(db.collection.update(criteria, objNew, upsert, multi )),要说明的是,如果upsert为true,那么在没有找到符合更新条件的情况下,mongo会在集合中插入一条记录其值满足更新条件的记录(其中的字段只有更新条件中涉及的字段,字段的值满足更新条件),然后将其更新(注意,如果更新条件是$lt这种不等式条件,那么upsert插入的记录只会包含更新操作涉及的字段,而不会有更新条件中的字段。这也很好理解,因为没法为这种字段定值,mongo索性就不取这些字段)。如果符合条件的记录中没有要更新的字段,那么mongo会为其创建该字段,并更新。 上面大致介绍了MongoDB命令行中所涉及的操作,只是为了记录和查阅。细心的也许会发现,这篇文章,越往后我的耐心越少。期待有时间能分享一些not very navie的东西。

Mongodb

标签:

人气教程排行