时间:2021-07-01 10:21:17 帮助过:1人阅读
首先我们要得到两个txt一个是train.txt另一个是test.txt
内容如下:
前面代表是图像所在目录下的名字 第二个数字代表标签 test.txt train.txt
下面是matlab代码
clc;
clear;
load(‘mnist_uint8.mat‘)
num=size(test_x,1);
fid = fopen(‘test_minst.txt‘,‘wt‘);
savepath=‘testImage/‘;
%train_y=interge(train_y);
for i=1:num
image=reshape(test_x(i,:),[28 28]);
label=find(test_y(i,:)~=0)-1;
if i<10
imageName=strcat(‘test_0000‘,num2str(i));
end
if i<100&&i>9
imageName=strcat(‘test_000‘,num2str(i));
end
if i<1000&&i>99
imageName=strcat(‘test_00‘,num2str(i));
end
if i<10000&&i>999
imageName=strcat(‘test_0‘,num2str(i));
end
if i>9999
imageName=strcat(‘test_‘,num2str(i));
end
imageName=strcat(imageName,‘.jpg‘);
imagepath=strcat(savepath,imageName);
fprintf(fid,‘%s\t‘,imagepath);
fprintf(fid,‘%s\n‘,num2str(label));
imwrite(image,imagepath,‘jpg‘);
end
fclose(fid);
这样我们得到
这样我们得到两个文件夹和两个txt
下一步在caffe example下新建一个目录 至于叫什么 你自己决定我的叫newmnist文件夹 之后我将测试图像集和训练图像集和两个txt导入caffe目录下的data目录下的一个子文件夹,这个我忘截图了 ,
在example/newmnist文件夹新建一个sh
目的是将图片集写成lmdb格式
sh如下:
#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirs
EXAMPLE=examples/newmnist
DATA=data/testmnist
TOOLS=build/tools
TRAIN_DATA_ROOT=data/testmnist/Image/
VAL_DATA_ROOT=data/testmnist/testImage/
# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=28
RESIZE_WIDTH=28
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi
if [ ! -d "$TRAIN_DATA_ROOT" ]; then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet training data is stored."
exit 1
fi
if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet validation data is stored."
exit 1
fi
echo "Creating train lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train_minst.txt \
$EXAMPLE/mnist_train_lmdb
echo "Creating test lmdb..."
GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$DATA/test_minst.txt \
$EXAMPLE/mnist_test_lmdb
echo "Done."
我标红的地方就是需要改的地方
EXAMPLE就是example你新建的目录
DATA就是你在data文件夹下新建目录,里面有两个图片集(训练和测试训练集)及上面所说的两个txt
TRAIN_DATA_ROOT就是训练图片集路径
VAL_DATA_ROOT就是训练图片集路径
运行sh example/newmnist/creatmnistLmdb.sh
就可以在example/newmnist/下找到mnist_test_lmdb和mnist_train_lmdb两个文件夹
为了验证我们是否正确得到lmdb文件
我们进行mnist数据集训练
第一个sh文件是train_lenet,sh
#!/usr/bin/env sh
./build/tools/caffe train --solver=examples/newmnist/lenet_solver.prototxt
修改路径
创建lenet_solver.prototxt文件
# The train/test net protocol buffer definition
net: "examples/newmnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 1000
# snapshot intermediate results
snapshot: 500
snapshot_prefix: "examples/newmnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU
标红都是需要修改的路径
lenet_train_test.prototxt复制从mnist文件夹到当前文件夹下
修改路径
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/newmnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/newmnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
标红地方修改
最后 sh example/newmnist/train_lenet,sh
yun标红的都是
caffe如何将图片数据写成lmdb格式
标签: