时间:2021-07-01 10:21:17 帮助过:2人阅读
Sql语句优化和索引
1.Innerjoin和左连接,右连接,子查询
A. inner join内连接也叫等值连接是,left/rightjoin是外连接。
SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id;
SELECT A.id,A.name,B.id,B.name FROM A RIGHT JOIN ON B A.id= B.id;
SELECT A.id,A.name,B.id,B.name FROM A INNER JOIN ON A.id =B.id;
经过来之多方面的证实inner join性能比较快,因为inner join是等值连接,或许返回的行数比较少。但是我们要记得有些语句隐形的用到了等值连接,如:
SELECT A.id,A.name,B.id,B.name FROM A,B WHERE A.id = B.id;
推荐:能用inner join连接尽量使用inner join连接
B.子查询的性能又比外连接性能慢,尽量用外连接来替换子查询。
Select* from A where exists (select * from B where id>=3000 and A.uuid=B.uuid);
A表的数据为十万级表,B表为百万级表,在本机执行差不多用2秒左右,我们可以通过explain可以查看到子查询是一个相关子查询(DEPENDENCE SUBQUERY);MySQL是先对外表A执行全表查询,然后根据uuid逐次执行子查询,如果外层表是一个很大的表,我们可以想象查询性能会表现比这个更加糟糕。
一种简单的优化就是用innerjoin的方法来代替子查询,查询语句改为:
Select* from A inner join B using(uuid) where b.uuid>=3000;
这个语句执行测试不到一秒;
C.在使用ON 和 WHERE 的时候,记得它们的顺序,如:
SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id WHERE B.NAME=’XXX’
执行过程会先执行ON 后面先过滤掉B表的一些行数。然而WHERE是后再过滤他们两个连接产生的记录。
不过在这里提醒一下大家:ON后面的条件只能过滤出B表的条数,但是连接返回的记录的行数还是A表的行数是一样。如:
SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id;
返回的记录数是A表的条数,ON后面的条件只起到过滤B表的记录数,而
SELECT A.id,A.name,B.id,B.name FROM A ,B WHERE A.id = B.id
返回的条数,是笛卡尔积后,符合A.id = B.id这个条件的记录
D.使用JOIN时候,应该用小的结果驱动打的结果(left join 左边表结果尽量小,如果有条件应该放到左边先处理,right join同理反向),同事尽量把牵涉到多表联合的查询拆分多个query(多个表查询效率低,容易锁表和阻塞)。如:
Select * from A left join B ona.id=B.ref_id where B.ref_id>10;
可以优化为:select * from (select * from A wehre id >10) T1 left join B onT1.id=B.ref_id;
2.建立索引,加快查询性能.
A.在建立复合索引的时候,在where条件中用到的字段在复合索引中,则最好把这个字段放在复合索引的最左端,这样才能使用索引,才能提高查询。
B.保证连接的索引是相同的类型,意思就是A表和B表相关联的字段,必须是同类型的。这些类型都建立了索引,这样才能两个表都能使用索引,如果类型不一样,至少有一个表使用不了索引。
C.索引,不仅仅是主键和唯一键,也可以是其他的任何列。在使用like其中一个有索引的字段列的时候。
如: select *from A name like ‘xxx%’;
这个sql会使用name的索引(前提name建立了索引);而下面的语句就使用不了索引
Select * from A name like ‘%xxx’;
因为‘%’代表任何字符,%xxx不知道怎么去索引的,所以使用不了索引。
D.复合索引
比如有一条语句这样的:select* from users where area =’beijing’ and age=22;
如果我们是在area和age上分别创建索引的话,由于mysql查询每次只能使用一个索引,所以虽然这样已经相对不做索引时全表扫描提高了很多效 率,但是如果area,age两列上创建复合索引的话将带来更高的效率。如果我们创建了(area,age,salary)的复合索引,那么其实相当于创 建了(area,age,salary),(area,age),(area)三个索引,这样称为最佳左前缀特性。因此我们在创建复合索引的应该将最常用 作限制条件的列放在最左边,依次递减。
E.索引不会包含有NULL值的列
只要列中包含有NULL值都将不会被包含在索引中(除非是唯一值的域,可以存在一个NULL),复合索引中只要有一列含有NULL值,那么这一列对于此复合索引是无效的。所以我们在数据库设计时不要让字段的默认值为NULL.
F.使用短索引
对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在钱10个或者20字符内,多数值是唯一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。
G.排序的索引问题
Mysql查询只是用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。
3.limit千万级分页的时候优化。
A.在我们平时用limit,如:
Select * from A order by id limit 1,10;
这样在表数据很少的时候,看不出什么性能问题,倘若到达千万级,如:
Select * from A order by id limit10000000,10;
虽然都是只查询10记录,但是这个就性能就让人受不了了。所以为什么当表数据很大的时候,我们还继续用持久层框架如hibernate,ibatis就会有一些性能问题,除非持久层框架对这些大数据表做过优化。
B.在遇见上面的情况,我们可以用另外一种语句优化,如:
Select * from A where id>=(Select idfrom a limit 10000000,1) limit 10;
确实这样快了很多,不过前提是,id字段建立了索引。也许这个还不是最优的,其实还可以这样写:
Select * from A where id between 10000000and 10000010;
这样的效率更加高。
4.尽量避免Select * 命令
A.从表中读取越多的数据,查询会变得更慢。它会增加磁盘的操作时间,还是在数据库服务器与web服务器是独立分开的情况下,你将会经历非常漫长的网络延迟。仅仅是因为数据不必要的在服务器之间传输。
5.尽量不要使用BY RAND()命令
A.如果您真需要随机显示你的结果,有很多更好的途径实现。而这个函数可能会为表中每一个独立的行执行BY RAND()命令—这个会消耗处理器的处理能力,然后给你仅仅返回一行。
6.利用limit 1取得唯一行
A.有时要查询一张表时,你要知道需要看一行,你可能去查询一条独特的记录。你可以使用limit 1.来终止数据库引擎继续扫描整个表或者索引,如:
Select * from A where namelike ‘%xxx’ limit 1;
这样只要查询符合like ‘%xxx’的记录,那么引擎就不会继续扫描表或者索引了。
7.尽量少排序
A.排序操作会消耗较多的CPU资源,所以减少排序可以在缓存命中率高等
8.尽量少OR
A.当where子句中存在多个条件以“或”并存的时候,Mysql的优化器并没有很好的解决其执行计划优化 问题,再加上mysql特有的sql与Storage分层架构方式,造成了其性能比较地下,很多时候使用union all或者union(必要的时候)的方式代替“or”会得到更好的效果。
9.尽量用union all 代替union
A.union和union all的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的cpu运算,加大资源消耗及延迟。所以当 我们可以确认不可能出现重复结果集或者不在乎重复结果集的时候,尽量使用union all而不是union.
10.避免类型转换
A.这里所说的“类型转换”是指where子句中出现column字段的类型和传入的参数类型不一致的时候发生的类型转换。人为的上通过转换函数进行转换,直接导致mysql无法使用索引。如果非要转型,应该在传入参数上进行转换。
11.不要在列上进行运算
A. 如下面:select * fromusers where YEAR(adddate)<2007;将在每个行进行运算,这些导致索引失效进行全表扫描,因此我们可以改成:
Select * from users where adddate<’2007-01-01’;
12.尽量不要使用NOT IN和<>操作
A. NOT IN和<>操作都不会使用索引,而是将会进行全表扫描。NOT IN可以NOT EXISTS代替,id<>3则可以使用id>3 or id <3;如果NOT EXISTS是子查询,还可以尽量转化为外连接或者等值连接,要看具体sql的业务逻辑。
B.把NOT IN转化为LEFT JOIN如:
SELECT * FROM customerinfo WHERE CustomerIDNOT in (SELECT CustomerID FROM salesinfo );
优化:
SELECT * FROM customerinfo LEFT JOINsalesinfoON customerinfo.CustomerID=salesinfo. CustomerID WHEREsalesinfo.CustomerID IS NULL;
13.使用批量插入节省交互(最好是使用存储过程)
A. 尽量使用insert intousers(username,password) values(‘test1’,’pass1’), (‘test2’,’pass2’), (‘test3’,’pass3’);
14. 锁定表
A. 尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很多的应用系统中.由于事务执行的过程中,数据库 将会被锁定,因此其他的用户请求只能暂时等待直到该事务结算.如果一个数据库系统只有少数几个用户来使用,事务造成的影响不会成为一个太大问题;但假设有 成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟.其实有些情况下我们可以通过锁定表的方法来获得更好的性 能.如:
LOCK TABLE inventory write
Select quanity from inventory whereitem=’book’;
…
Update inventory set quantity=11 whereitem=’book’;
UNLOCK TABLES;
这里,我们用一个select语句取出初始数据,通过一些计算,用update语句将新值更新到列表中。包含有write关键字的LOCK TABLE语句可以保证在UNLOCK TABLES命令被执行之前,不会有其他的访问来对inventory进行插入,更新或者删除的操作。
15.对多表关联的查询,建立视图
A.对多表的关联可能会有性能上的问题,我们可以对多表建立视图,这样操作简单话,增加数据安全性,通过视图,用户只能查询和修改指定的数据。且提高表的逻辑独立性,视图可以屏蔽原有表结构变化带来的影响。
mysql语句优化总结(一)
标签: