时间:2021-07-01 10:21:17 帮助过:20人阅读
client 也可以使用save或者bgsave命令通知redis做一次快照持久化。save操作是在主线程中保存快照的,由于redis是用一个主线程来处理所有 client的请求,这种方式会阻塞所有client请求。所以不推荐使用。
另一点需要注意的是,每次快照持久化都是将内存数据完整写入到磁盘一次,并不 是增量的只同步脏数据。如果数据量大的话,而且写操作比较多,必然会引起大量的磁盘io操作,可能会严重影响性能。
redis会将每一个收到的写命令都通过write函数追加到文件中(默认是 appendonly.aof)。
当redis重启时会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。当然由于os会在内核中缓存 write做的修改,所以可能不是立即写到磁盘上。这样aof方式的持久化也还是有可能会丢失部分修改。不过我们可以通过配置文件告诉redis我们想要 通过fsync函数强制os写入到磁盘的时机。有三种方式如下(默认是:每秒fsync一次)
appendonly yes //启用aof持久化方式
# appendfsync always //每次收到写命令就立即强制写入磁盘,最慢的,但是保证完全的持久化,不推荐使用
appendfsync everysec //每秒钟强制写入磁盘一次,在性能和持久化方面做了很好的折中,推荐
# appendfsync no //完全依赖os,性能最好,持久化没保证
aof 的方式也同时带来了另一个问题。持久化文件会变的越来越大。例如我们调用incr test命令100次,文件中必须保存全部的100条命令,其实有99条都是多余的。因为要恢复数据库的状态其实文件中保存一条set test 100就够了。
为了压缩aof的持久化文件。redis提供了bgrewriteaof命令。收到此命令redis将使用与快照类似的方式将内存中的数据 以命令的方式保存到临时文件中,最后替换原来的文件。具体过程如下
需要注意到是重写aof文件的操作,并没有读取旧的aof文件,而是将整个内存中的数据库内容用命令的方式重写了一个新的aof文件,这点和快照有点类似。
使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek , 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。
对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。
一般来说, 如果想达到足以媲美 PostgreSQL 的数据安全性, 你应该同时使用两种持久化功能。
如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失, 那么你可以只使用 RDB 持久化。
其余情况我个人喜好选择AOF
5.1、
1).RDB持久化
该机制是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 比如每隔15分钟有数据变化将内存中的数据与磁盘同步。
redis默认配置中就采用了该方法,如下所示:
# after 900 sec (15 min) if at least 1 key changed 15分种内如果有1个以上的内容发生了变化就执行保存
# after 300 sec (5 min) if at least 10 keys changed 5分种内如果有10个以上的内容发生了变化就执行保存
# after 60 sec if at least 10000 keys changed 1分种内如果有10000 个以上的内容发生了变化就执行保存
2). AOF持久化:
该机制将以日志的形式记录服务器所处理的每一个写操作,在Redis服务器启动之初会读取该文件来重新构建数据库,以保证启动后数据库中的数据是完整的。
3). 无持久化:
我们可以通过配置的方式禁用Redis服务器的持久化功能,这样我们就可以将Redis视为一个功能加强版的memcached了。
4). 同时应用AOF和RDB。
5.2、RDB机制的优势和劣势:
优势->
1). 一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这对于文件备份而言是非常完美的。
比如,你可能打算每个小时归档一次最近24小时的数据,同时还要每天归档一次最近30天的数据。
通过这样的备份策略,一旦系统出现灾难性故障,我们可以非常容易的进行恢复。
2). 对于灾难恢复而言,RDB是非常不错的选择。
因为我们可以非常轻松的将一个单独的文件压缩后再转移到其它存储介质上。
3). 性能最大化。
对于Redis的服务进程而言,在开始持久化时,它唯一需要做的只是fork出子进程,之后再由子进程完成这些持久化的工作,
这样就可以极大的避免服务进程执行IO操作了。
4). 相比于AOF机制,如果数据集很大,RDB的启动效率会更高。
劣势->
1). 如果你想保证数据的高可用性,即最大限度的避免数据丢失,那么RDB将不是一个很好的选择。
因为系统一旦在定时持久化之前出现宕机现象,此前没有来得及写入磁盘的数据都将丢失。
2). 由于RDB是通过fork子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是1秒钟。
5.3、AOF机制的优势和劣势:
优势->
1). 该机制可以带来更高的数据安全性,即数据持久性。
Redis中提供了3中同步策略,即每秒同步、每修改同步和不同步。
事实上,每秒同步也是异步完成的,其效率也是非常高的,所差的是一旦系统出现宕机现象,那么这一秒钟之内修改的数据将会丢失。
而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变化都会被立即记录到磁盘中。
可以预见,这种方式在效率上是最低的。
至于无同步,无需多言,我想大家都能正确的理解它。
2). 由于该机制对日志文件的写入操作采用的是append模式,因此在写入过程中即使出现宕机现象,也不会破坏日志文件中已经存在的内容。
然而如果我们本次操作只是写入了一半数据就出现了系统崩溃问题,不用担心,
在Redis下一次启动之前,我们可以通过redis-check-aof工具来帮助我们解决数据一致性的问题。
3). 如果日志过大,Redis可以自动启用rewrite机制。即Redis以append模式不断的将修改数据写入到老的磁盘文件中,
同时Redis还会创建一个新的文件用于记录此期间有哪些修改命令被执行。因此在进行rewrite切换时可以更好的保证数据安全性。
4). AOF包含一个格式清晰、易于理解的日志文件用于记录所有的修改操作。事实上,我们也可以通过该文件完成数据的重建。
AOF的劣势有哪些呢?
1). 对于相同数量的数据集而言,AOF文件通常要大于RDB文件。
2). 根据同步策略的不同,AOF在运行效率上往往会慢于RDB。总之,每秒同步策略的效率是比较高的,同步禁用策略的效率和RDB一样高效。
5.4、其它
5.4.1. Snapshotting:
缺省情况下,Redis会将数据集的快照dump到dump.rdb文件中。此外,我们也可以通过配置文件来修改Redis服务器dump快照的频率,在打开6379.conf文件之后,我们搜索save,可以看到下面的配置信息:
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,则dump内存快照。
save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,则dump内存快照。
save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,则dump内存快照。
5.4.2. Dump快照的机制:
1). Redis先fork子进程。
2). 子进程将快照数据写入到临时RDB文件中。
3). 当子进程完成数据写入操作后,再用临时文件替换老的文件。
5.4.3. AOF文件:
上面已经多次讲过,RDB的快照定时dump机制无法保证很好的数据持久性。如果我们的应用确实非常关注此点,我们可以考虑使用Redis中的AOF机制。对于Redis服务器而言,其缺省的机制是RDB,如果需要使用AOF,则需要修改配置文件中的以下条目:
将appendonly no改为appendonly yes
从现在起,Redis在每一次接收到数据修改的命令之后,都会将其追加到AOF文件中。在Redis下一次重新启动时,需要加载AOF文件中的信息来构建最新的数据到内存中。
5.4.5. AOF的配置:
在Redis的配置文件中存在三种同步方式,它们分别是:
appendfsync always #每次有数据修改发生时都会写入AOF文件。
appendfsync everysec #每秒钟同步一次,该策略为AOF的缺省策略。
appendfsync no #从不同步。高效但是数据不会被持久化。
5.4.6. 如何修复坏损的AOF文件:
1). 将现有已经坏损的AOF文件额外拷贝出来一份。
2). 执行"redis-check-aof --fix <filename>"命令来修复坏损的AOF文件。
3). 用修复后的AOF文件重新启动Redis服务器。
5.4.7. Redis的数据备份:
在Redis中我们可以通过copy的方式在线备份正在运行的Redis数据文件。这是因为RDB文件一旦被生成之后就不会再被修改。Redis每次都是将最新的数据dump到一个临时文件中,之后在利用rename函数原子性的将临时文件改名为原有的数据文件名。因此我们可以说,在任意时刻copy数据文件都是安全的和一致的。鉴于此,我们就可以通过创建cron job的方式定时备份Redis的数据文件,并将备份文件copy到安全的磁盘介质中。
5.5、立即写入
//立即保存,同步保存 public static void syncSave() throws Exception{ Jedis jedis=new Jedis("127.0.0.1",6379); for (int i = 0; i <1000; i++) { jedis.set("key"+i, "Hello"+i); System.out.println("设置key"+i+"的数据到redis"); Thread.sleep(2); } //执行保存,会在服务器下生成一个dump.rdb数据库文件 jedis.save(); jedis.close(); System.out.println("写入完成"); }
运行结果:
这里的save方法是同步的,没有写入完成前不执行后面的代码。
5.6、异步写入
//异步保存 public static void asyncSave() throws Exception{ Jedis jedis=new Jedis("127.0.0.1",6379); for (int i = 0; i <1000; i++) { jedis.set("key"+i, "Hello"+i); System.out.println("设置key"+i+"的数据到redis"); Thread.sleep(2); } //执行异步保存,会在服务器下生成一个dump.rdb数据库文件 jedis.bgsave(); jedis.close(); System.out.println("写入完成"); }
如果数据量非常大,要保存的内容很多,建议使用bgsave,如果内容少则可以使用save方法。关于各方式的比较源自网友的博客。
Redis提供的持久化机制(RDB和AOF)
标签:pen export 信号 几分钟 一致性 避免 选择 out 大数