当前位置:Gxlcms > 数据库问题 > 使用highcharts显示mongodb中的数据

使用highcharts显示mongodb中的数据

时间:2021-07-01 10:21:17 帮助过:20人阅读

2、常用的update与find函数以及日期相关

from string import punctuation

for i in item_info.find().limit(50):
    print(i[province])    

for i in item_info.find():
    if i[province]:
        province= [i for i in i[province] if i not in punctuation]
    else:
        province= [不明]
    # 下面update函数使用了两个参数,第一个标识要更新哪些数据,第二个标识怎样修改
    # ‘_id‘:i[‘_id‘],key:value一一对应,通过这种方式表示要更新每一项
    sales.update({_id:i[_id]},{$set:{province:province}})

# find函数,两个参数,分别包含在{}中,第一个标识要找的条件,是一些键值对,第二个标识需要显示的字段,0不显示,1标识显示
# slice分片
for i in item_info.find({pub_date:{$in:[2016.01.12,2016.01.14]}},{area:{$slice:1},_id:0,price:0,title:0}).limit(300):
    print(i)
from datetime import date
from datetime import timedelta  
#日期
a = date(2017,1,12)
print(a)
# 2017-01-12

d = timedelta(days=1)
print(d)
# 1 day, 0:00:00


def get_all_dates(date1,date2):
    the_date = date(int(date1.split(.)[0]),int(date1.split(.)[1]),int(date1.split(.)[2]))
    end_date = date(int(date2.split(.)[0]),int(date2.split(.)[1]),int(date2.split(.)[2]))
    days = timedelta(days=1)

    while the_date <= end_date:
        yield (the_date.strftime(%Y.%m.%d))
        the_date = the_date + days


for i in get_all_dates(2017.01.02,2017.01.12):
    print(i)
    

3、相关数据格式

西红柿    蔬菜    山东    2.8    新    1500    kg    2017-1-11
卷心菜    蔬菜    河北    1.5    鲜    1000    kg    2017-1-9
玉米    粮食    辽宁    0.8    新    1580    kg    2016-11-25
大豆    粮食    山东    1.1    新    1000    kg    2017-1-8
卷心菜    蔬菜    河北    1.5    鲜    2705    kg    2017-1-9
玉米    粮食    辽宁    0.8    新    1669    kg    2016-11-25
大米    粮食    浙江    0.7    新    2115    kg    2016-11-28
大米    粮食    江苏    0.8    新    2151    kg    2016-11-15
西瓜    水果    山东    0.5    鲜    1518    kg    2016-10-1
山楂    水果    山东    2.5    鲜    1116    kg    2016-9-1
茄子    蔬菜    江苏    1.1    鲜    1500    kg    2016-9-15
小麦    粮食    河北    1.2    新    1695    kg    2016-9-1
葡萄    水果    山东    2.1    鲜    1719    kg    2016-9-17

4 、按照产品分类计算销售额

import charts
def
data_gen(cates): pipeline = [ {$match:{$and:[ {category:{$in:cates}}, {province:{$nin:[江苏]}} ]}}, {$group:{_id:$category,sum_sales:{$sum:{ $multiply:[$price,$quantity] }}}}, {$sort:{sum_sales:1}} ] for i in salesnew.aggregate(pipeline): data = { name: i[_id], data: [i[sum_sales]], type: column } yield data for i in data_gen([水果,蔬菜,粮食]): print(i) series = [i for i in data_gen([水果,蔬菜,粮食])] options = { chart : {zoomType:xy}, title : {text: 销售金额}, subtitle: {text: 图表}, yAxis : {title: {text: 金额}} } charts.plot(series,options=options,show=inline)

结果:

技术分享

值得注意的一点,在管道中不好进行数据类型的转换,所以最好存入mongodb中的数据是正确的数据类型。

关于数据类型的转换参考文章 how to convert string to numerical values in mongodb 地址:http://stackoverflow.com/questions/29487351/how-to-convert-string-to-numerical-values-in-mongodb
#代码:  db.my_collection.find({moop : {$exists : true}}).forEach( function(obj) { obj.moop = new NumberInt( obj.moop ); db.my_collection.save(obj); } );


5、计算每个每个月的销售数量

def data_gen(cates):
    pipeline = [
    { $project : { quantity: 1,province: 1,saledate: 1,category:1,ymstring : { $concat: [ {$arrayElemAt: [ {$split: [$saledate, -]}, 0 ]},-,  {$arrayElemAt: [ {$split: [$saledate, -]}, 1 ]}] }}},   
    {$match:{$and:[
                       {category:{$in:cates}},
                       {province:{$nin:[江苏]}}
                      ]}},
   
    {$group:{_id:$ymstring ,sum_quantity:{$sum:$quantity}}},
    {$sort:{sum_quantity:1}}
]
    for i in salesnew.aggregate(pipeline):
        yield i
for i in data_gen([水果,蔬菜,粮食]):
    print(i)
# 结果    
{_id: 2016-10, sum_quantity: 1518}
{_id: 2016-8, sum_quantity: 4350}
{_id: 2016-12, sum_quantity: 8223}
{_id: 2016-11, sum_quantity: 11283}
{_id: 2016-9, sum_quantity: 12037}
{_id: 2017-1, sum_quantity: 12394}

各个函数的相关参考  https://docs.mongodb.com/manual/reference/operator/aggregation/

语句:
‘$concat‘: [ {‘$arrayElemAt‘: [ {‘$split‘: [‘$saledate‘, ‘-‘]}, 0 ]}, ‘-‘, {‘$arrayElemAt‘: [ {‘$split‘: [‘$saledate‘, ‘-‘]}, 1 ]} ]
解释如下:
# 分组
‘$split‘: [‘$saledate‘, ‘-‘]
# 数组中的元素,语法:$arrayElemAt: [ <array>, <idx> ]
# 因为$split也是函数,所以用{}来包含
‘$arrayElemAt‘: [ {‘$split‘: [‘$saledate‘, ‘-‘]}, 0 ]
‘$arrayElemAt‘: [ {‘$split‘: [‘$saledate‘, ‘-‘]}, 1 ]
# 最后,用$concat函数连接,语法{ $concat: [ <expression1>, <expression2>, ... ] }
# 同样,由于$arrayElemAt函数,所以用{}来包含{‘$arrayElemAt‘: [ ‘arrayname‘, 0 ]},否则,不需要{}
#以下两个函数作用相同,区别在于,第一个‘$slice在$group中,第二个在$project中

$slice可以指定从第几个元素开始分片
{ $slice: [ <array>, <position>, <n> ] }
{ $slice: [ <array>, <n> ] }
def data_gen(cates):
    pipeline = [
    { $project : { quantity: 1,province: 1,saledate: 1,category:1,ymarray : { $split: [$saledate, -] }}},   
    {$match:{$and:[
                       {category:{$in:cates}},
                       {province:{$nin:[江苏]}}
                      ]}},
   
    {$group:{_id:{  $slice: [$ymarray,2] },sum_quantity:{$sum:$quantity}}},
    {$sort:{sum_quantity:1}}
]
    for i in salesnew.aggregate(pipeline):
        print(ymarray)
        yield i

for i in data_gen([水果,蔬菜,粮食]):
    print(i)
    
 { $slice:[ {$split: [$saledate, -]},2 ]}
def data_gen(cates):
    pipeline = [
    { $project : { quantity: 1,province: 1,saledate: 1,category:1,ymarray : { $slice:[ {$split: [$saledate, -]},2 ]}  }},   
    {$match:{$and:[
                       {category:{$in:cates}},
                       {province:{$nin:[江苏]}}
                      ]}},   
    {$group:{_id:$ymarray,sum_quantity:{$sum:$quantity}}},
    {$sort:{sum_quantity:1}}
    ]
    for i in salesnew.aggregate(pipeline):
       yield i

for i in data_gen([水果,蔬菜,粮食]):
    print(i)
# 结果      
{_id: [2016, 10], sum_quantity: 1518}
{_id: [2016, 8], sum_quantity: 4350}
{_id: [2016, 12], sum_quantity: 8223}
{_id: [2016, 11], sum_quantity: 11283}
{_id: [2016, 9], sum_quantity: 12037}
{_id: [2017, 1], sum_quantity: 12394}

  6、计算每个月的销售额

def data_gen(cates):
    pipeline = [
     { $project : { quantity: 1,province: 1,saledate: 1,category:1 , price:1}},  
    {$match:{$and:[
                       {category:{$in:cates}},
                       {province:{$nin:[江苏]}}
                      ]}},
    # 先统计每天的销售额,注意$multiply函数的用法
    {$group:{_id:$saledate,sum_quantity:{$sum:{ $multiply:[$price,$quantity] }}}},
    # 在上面的基础上继续分组,构造月份作为分组依据,注意上面的$saledate变为$_id,sum_quantity变为$sum_quantity,前面有$符号
    {$group:{_id:{$concat: [ {$arrayElemAt: [ {$split: [$_id, -]}, 0 ]},-,  {$arrayElemAt: [ {$split: [$_id, -]}, 1 ]}]},sumend:{$sum:$sum_quantity}}},
    {$sort:{sumend:1}}
]
    for i in salesnew.aggregate(pipeline):
        data = {
            name: i[_id],
            data: [i[sumend]],
            type: column
        }

        yield data

for i in data_gen([水果,蔬菜,粮食]):
    print(i)

series = [i for i in data_gen([水果,蔬菜,粮食])]
options = {
    chart   : {zoomType:xy},
    title   : {text: 销售数量},
    subtitle: {text: 图表},
    yAxis   : {title: {text: 数量}}
    }

charts.plot(series,options=options,show=inline)
def data_gen(cates):
    pipeline = [
    { $project : { quantity: 1,province: 1,saledate: 1,category:1 , price:1 }},  
    {$match:{$and:[
                       {category:{$in:cates}},
                       {province:{$nin:[江苏]}}
                      ]}},
    {$group:{_id:$saledate,sum_quantity:{$sum:{ $multiply:[$price,$quantity] }}}},
    # 不同之处在于这里构建了一个新字段,注意各个字段是基于上一步的sum_quantity,_id,即上面的$saledate,使用$contat时,用$_id
    {$project : { sum_quantity: 1,_id: 1, ym: {$concat: [ {$arrayElemAt: [ {$split: [$_id, -]}, 0 ]},-,  {$arrayElemAt: [ {$split: [$_id, -]}, 1 ]}] }  }}, 
    {$group:{_id:$ym,sumend:{$sum:$sum_quantity}}},
    {$sort:{sumend:1}}
]
    for i in salesnew.aggregate(pipeline):
        data = {
            name: i[_id],
            data: [i[sumend]],
            type: column
        }

        yield data

for i in data_gen([水果,蔬菜,粮食]):
    print(i)

series = [i for i in data_gen([水果,蔬菜,粮食])]
options = {
    chart   : {zoomType:xy},
    title   : {text: 销售额},
    subtitle: {text: 图表},
    yAxis   : {title: {text: 金额}}
    }

charts.plot(series,options=options,show=inline)
#
{name: 2016-10, data: [759.0], type: column} {name: 2016-11, data: [12369.8], type: column} {name: 2016-12, data: [12566.1], type: column} {name: 2016-8, data: [6535.2], type: column} {name: 2016-9, data: [22804.2], type: column} {name: 2017-1, data: [24873.3], type: column}

技术分享

highcharts 参考:

http://www.highcharts.com/

 

使用highcharts显示mongodb中的数据

标签:[1]   ant   行数据   cal   西红柿   tac   管道   _id   array   

人气教程排行