时间:2021-07-01 10:21:17 帮助过:13人阅读
2、获取新创建数据自增ID
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host=‘127.0.0.1‘, port=3306, user=‘root‘, passwd=‘123‘, db=‘t1‘) cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) conn.commit() cursor.close() conn.close() # 获取最新自增ID new_id = cursor.lastrowid
3、获取查询数据
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host=‘127.0.0.1‘, port=3306, user=‘root‘, passwd=‘123‘, db=‘t1‘) cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据 row_1 = cursor.fetchone() # 获取前n行数据 # row_2 = cursor.fetchmany(3) # 获取所有数据 # row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
4、fetch数据类型
关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host=‘127.0.0.1‘, port=3306, user=‘root‘, passwd=‘123‘, db=‘t1‘) # 游标设置为字典类型 cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
一、对象映射关系(ORM)
orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却都是关系型的,为了保证一致的使用习惯,通过orm将编程语言的对象模型和数据库的关系模型建立映射关系,这样我们在使用编程语言对数据库进行操作的时候可以直接使用编程语言的对象模型进行操作就可以了,而不用直接使用sql语言
优点:
缺点:
二、SQLAlchemy
在Python中,最有名的ORM框架是SQLAlchemy。用户包括openstack\Dropbox等知名公司或应用
Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
安装:
pip install SQLAlchemy pip install pymysql
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python # coding=utf-8 from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:xiaoming.note5@115.159.193.77:3306/school?charset=utf8", max_overflow=5) # 执行SQL cur = engine.execute( "insert into user (name, password) values(‘lihy‘, ‘lihy‘)" ) # 新插入行自增ID cur.lastrowid # 执行SQL cur = engine.execute( "insert into user(name, password) values(%s, %s)", [(‘liq‘, ‘liq‘), (‘liuxj‘, ‘liuxj235‘)] ) # 执行SQL cur = engine.execute( "insert into user(name, password) values(%(name)s, %(password)s)", name=‘lium‘, password=‘lium123‘ ) # 执行SQL cur = engine.execute(‘select * from user‘) # 获取第一行数据, 第n行,所有数据 cur.fetchone() cur.fetchmany(3) cur.fetchall()
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、外键关联
创建表
# orm_fk.py
#!/usr/bin/env python # coding=utf-8 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, Date from sqlalchemy.orm import relationship engine = create_engine("mysql+pymysql://root:xiaoming.note5@115.159.193.77/school", encoding=‘utf-8‘) Base = declarative_base() class Student(Base): __tablename__ = ‘student‘ id = Column(Integer, primary_key=True) name = Column(String(32), nullable=False) age = Column(String(32), nullable=False) register_date = Column(Date, nullable=False) def __repr__(self): return ‘<%s name:%s>‘ % (self.id, self.name) class StudyRecord(Base): __tablename__ = ‘study_record‘ id = Column(Integer, primary_key=True) day = Column(Integer,nullable=False) status = Column(String(32), nullable=False) stu_id = Column(Integer, ForeignKey(‘student.id‘))
#关联student表里的id
student = relationship(‘Student‘, backref=‘my_study_record‘) # Student为关联的类 def __repr__(self): return ‘<%s day:%s status:%s>‘ % (self.student.name, self.day, self.status) Base.metadata.create_all(engine)
注:my_student = relationship("Student",backref="my_study_record")这个nb,允许你在user表里通过backref字段反向查出所有它在addresses表里的关联项
插入数据
# cat orm_fk
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from orm_fk import Student, StudyRecord, engine Session = sessionmaker(bind=engine) session = Session() session.add_all([ Student(name=‘lihy‘, age=21, register_date=‘2016-10-15‘), Student(name=‘liq‘, age=22, register_date=‘2016-11-16‘), Student(name=‘zhuxj‘, age=23, register_date=‘2016-12-17‘), StudyRecord(day=1, status=‘yes‘, stu_id=1), StudyRecord(day=2, status=‘yes‘, stu_id=1), StudyRecord(day=3, status=‘no‘, stu_id=1), StudyRecord(day=3, status=‘yes‘, stu_id=2), ]) session.commit()
st1 = Student(name=‘lium‘, age=22, register_date=‘2011-10-15‘)
st2 = Student(name=‘liuxj‘, age=25, register_date=‘2011-11-15‘)
sr1 = StudyRecord(day=4, status=‘yes‘, stu_id=1),
sr2 = StudyRecord(day=5, status=‘yes‘, stu_id=1),
sr3 = StudyRecord(day=6, status=‘no‘, stu_id=1),
sr4 = StudyRecord(day=7, status=‘yes‘, stu_id=2),
session.add_all([st1,st2,sr1,sr2,sr3,sr4])
session.commit()
查询数据
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from orm_fk import Student, StudyRecord, engine Session = sessionmaker(bind=engine) session = Session() stu_obj = session.query(Student).filter(Student.name==‘lihy‘).first() print(stu_obj.my_study_record)
2、多外键关联
#!/usr/bin/env python # coding=utf-8 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, Date from sqlalchemy.orm import relationship engine = create_engine("mysql+pymysql://root:xiaoming.note5@115.159.193.77/school", encoding=‘utf-8‘) Base = declarative_base() class Customer(Base): __tablename__ = ‘customer‘ id = Column(Integer, primary_key=True) name = Column(String(32)) billing_address_id = Column(Integer, ForeignKey(‘address.id‘)) shipping_address_id = Column(Integer, ForeignKey(‘address.id‘)) billing_address = relationship(‘Address‘, foreign_keys=[billing_address_id]) shipping_address = relationship(‘Address‘, foreign_keys=[shipping_address_id]) def __repr__(self): return ‘<%s name:%s billing_address:%s shipping_adress>‘ % (self.name, self.billing_address.street, self.shipping_address.street) class Address(Base): __tablename__ = ‘address‘ id = Column(Integer, primary_key=True) street = Column(String(64)) city = Column(String(64)) province = Column(String(64)) Base.metadata.create_all(engine)
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Address, Customer, engine Session = sessionmaker(bind=engine) session = Session() session.add_all([ Address(street=‘huaxia‘, city=‘SH‘, province=‘ShangHai‘), Address(street=‘sunhua‘, city=‘BJ‘, province=‘HeNan‘), Address(street=‘xihuan‘, city=‘XC‘, province=‘ShangHai‘), Customer(name=‘lihy‘, billing_address_id=1, shipping_address_id=2), Customer(name=‘liq‘, billing_address_id=1, shipping_address_id=1), ]) session.commit()
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Customer, Address, engine Session = sessionmaker(bind=engine) session = Session() ret = session.query(Customer).filter(Customer.name==‘lihy‘).first() print(ret.billing_address.street, ret.shipping_address.province)
3、多对多关联
#!/usr/bin/env python # coding=utf-8 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, Date, Table from sqlalchemy.orm import relationship engine = create_engine("mysql+pymysql://root:xiaoming.note5@115.159.193.77/school", encoding=‘utf-8‘) Base = declarative_base() bookidToAuthorid = Table(‘bookidToAuthorid‘, Base.metadata, Column(‘bookid‘, Integer, ForeignKey(‘books.id‘)), Column(‘authorid‘, Integer, ForeignKey(‘authors.id‘)), ) class Book(Base): __tablename__ = ‘books‘ id = Column(Integer, primary_key=True) name = Column(String(64)) pub_date = Column(Date) authors = relationship(‘Author‘, secondary=bookidToAuthorid, backref=‘books‘) def __repr__(self): return self.name class Author(Base): __tablename__ = ‘authors‘ id = Column(Integer, primary_key=True) name = Column(String(32)) def __repr__(self): return self.name Base.metadata.create_all(engine)
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine Session = sessionmaker(bind=engine) session = Session() b1 = Book(name="learn python", pub_date=‘2011-10-15‘) b2 = Book(name="learn linux", pub_date=‘2011-10-16‘) b3 = Book(name="learn C++", pub_date=‘2011-10-17‘) a1 = Author(name="lihy") a2 = Author(name="liq") a3 = Author(name="lium") b1.authors = [a1, a3] b3.authors = [a1, a2, a3] session.add_all([b1, b2, b3, a1, a2, a3]) session.commit()
#!/usr/bin/env python
# coding=utf-8
from sqlalchemy.orm import sessionmaker
from cj import Book, Author, engine
Session = sessionmaker(bind=engine)
session = Session()
ret = session.query(Book).filter(Book.name==‘learn python‘).first()
print(ret.authors)
多对多删除
通过书删除作者
未删前:
[root@VM_255_164_centos mtm]# python3 query.py [lihy, lium]
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine Session = sessionmaker(bind=engine) session = Session() author_obj = session.query(Author).filter(Author.name==‘lihy‘).first() book_obj = session.query(Book).filter_by(name="learn python").first() book_obj.authors.remove(author_obj) session.commit()
# 删除后
# python3 query.py [lium]
直接删除作者,会把这个作者跟所有书的关联数据也删掉
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine Session = sessionmaker(bind=engine) session = Session() author_obj = session.query(Author).filter(Author.name==‘lihy‘).first() session.delete(author_obj) session.commit()
查询数据
mysql> select * from books; +----+--------------+------------+ | id | name | pub_date | +----+--------------+------------+ | 1 | learn python | 2011-10-15 | | 2 | learn C++ | 2011-10-17 | | 3 | learn linux | 2011-10-16 | +----+--------------+------------+ 3 rows in set (0.00 sec) print(session.query(Book.name, Book.pub_date).all()) # [(‘learn python‘, datetime.date(2011, 10, 15)), (‘learn C++‘, datetime.date(2011, 10, 17)), (‘learn linux‘, datetime.date(2011, 10, 16))]
多条件查询
objs = session.query(Book).filter(Book.id>1).filter(Book.id<3).all()
统计
session.query(Book).filter(Book.name.like(‘l%‘)).count()
分组
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine from sqlalchemy import func Session = sessionmaker(bind=engine) session = Session() print(session.query(func.count(Book.name), Book.name).group_by(Book.name).all())
# [(1, ‘learn C++‘), (1, ‘learn linux‘), (1, ‘learn python‘)]
相当于原声sql:
mysql> select count(books.name) AS count_1, books.name as books_name from books group by books.name; +---------+--------------+ | count_1 | books_name | +---------+--------------+ | 1 | learn C++ | | 1 | learn linux | | 1 | learn python | +---------+--------------+ 3 rows in set (0.00 sec)
修改
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine from sqlalchemy import func Session = sessionmaker(bind=engine) session = Session() books_obj = session.query(Book).filter_by(name=‘learn python‘).first() print(books_obj.pub_date) books_obj.pub_date = "2011-11-11" session.commit() print(books_obj.pub_date) # python3 d1.py 2011-10-15 2011-11-11
回滚
#!/usr/bin/env python # coding=utf-8 from sqlalchemy.orm import sessionmaker from cj import Book, Author, engine from sqlalchemy import func Session = sessionmaker(bind=engine) session = Session() books_obj = session.query(Book).filter_by(name=‘learn python‘).first() print(books_obj.pub_date) books_obj.pub_date = "2012-12-12" print(books_obj.pub_date) session.rollback() print(books_obj.pub_date)
# 2011-11-11
# 2012-12-12
# 2011-11-11
其他:
# 删 session.query(Book).filter(Book.id > 2).delete() session.commit() # 增 session.query(Book).filter(Book.id == 2).update({"pub_date": "2013-12-13"}) session.commit() session.query(Book).filter(Book.id == 2).update({Book.pub_date: Book.pub_date + 10}) # 查 session.query(Book).all() # 条件 ret = session.query(Users).filter_by(name=‘alex‘).all() ret = session.query(Users).filter(Users.id > 1, Users.name == ‘eric‘).all() ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == ‘eric‘).all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=‘eric‘))).all() from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == ‘eric‘)).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == ‘eric‘)).all() ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == ‘eric‘, Users.id > 3), Users.extra != "" )).all() # 通配符 ret = session.query(Users).filter(Users.name.like(‘e%‘)).all() ret = session.query(Users).filter(~Users.name.like(‘e%‘)).all() # 限制 ret = session.query(Users)[1:2] # 排序 ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组 from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合 q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
python操作mysql(pymysql + sqlalchemy)
标签:dex sum orm 字典 相同 通配符 文件 交互 eric