RMySQL。但是在R里面,回传文本会出现截断的情况,这一情况可把我弄得有点手足无措。
一、数据库读入——RODBC包
CRAN 里面的包 RODBC 提供了 ODBC的访问接口:
- odbcConnect 或 odbcDriverConnect (在Windows图形化界面下,可以通过对话框选择数据库) 可以打开一个连接,返回一个用于随后数据库访问的控制(handle)。 打印一个连接会给出ODBC连接的一些细节,而调用 odbcGetInfo 会给出客户端和服务器的一些细节信息。
- 在一个连接中的表的细节信息可以通过函数 sqlTables 获得。
- 函数 sqlSave 会把 R 数据框复制到一个数据库的表中, 而函数 sqlFetch 会把一个数据库中的表拷贝到 一个 R 的数据框中。
- 通过sqlQuery进行查询,返回的结果是 R 的数据框。(sqlCopy把一个 查询传给数据库,返回结果在数据库中以表的方式保存。) 一种比较好的控制方式是首先调用 odbcQuery, 然后 用 sqlGetResults 取得结果。后者可用于一个循环中 每次获得有限行,就如函数 sqlFetchMore 的功能。
- 连接可以通过调用函数 close 或 odbcClose 来关闭。 没有 R 对象对应或不在 R 会话后面的连接也可以调用这两个函数来关闭, 但会有警告信息。
[plain] view plain copy
print?
- #安装RODBC包
- install.packages("RODBC")
- library(RODBC)
- mycon<-odbcConnect("mydsn",uid="user",pwd="rply")
- #通过一个数据源名称(mydsn)和用户名(user)以及密码(rply,如果没有设置,可以直接忽略)打开了一个ODBC数据库连接
-
- data(USArrests)
- #将R自带的“USArrests”表写进数据库里
- sqlSave(mycon,USArrests,rownames="state",addPK=TRUE)
- #将数据流保存,这时打开SQL Server就可以看到新建的USArrests表了
- rm(USArrests)
- #清除USArrests变量
-
- sqlFetch(mycon, "USArrests" ,rownames="state")
- #输出USArrests表中的内容
- sqlQuery(mycon,"select * from USArrests")
- #对USArrests表执行了SQL语句select,并将结果输出
-
- sqlDrop(channel,"USArrests")
- #删除USArrests表
- close(mycon)
- #关闭连接
本段来自R语言︱文件读入、读出一些方法罗列(批量xlsx文件、数据库、文本txt、文件夹)
1、sqlSave函数
[plain] view plain
copy
print?
- sqlSave(channel, dat, tablename = NULL, append = FALSE,
- rownames = TRUE, colnames = FALSE, verbose = FALSE,
- safer = TRUE, addPK = FALSE, typeInfo, varTypes,
- fast = TRUE, test = FALSE, nastring = NULL)
其中这个函数的使用还是很讲究的,参数的认识很重要。
append代表是否追加,默认不追加,如果一张已经有数据的表,就可以用append追加新的数据,需要同样的column,一般开个这个就行。
rownames,可以是逻辑值,也可以是字符型。
colnames,列名;
verbose,默认为FALSE,是否发送语句到R界面,如果TRUE,那么每条上传数据就会出现在命令栏目致之中。
addPK,是否将rownames指定为主键。
2、sqlUpdate函数
[html] view plain
copy
print?
- sqlUpdate(channel, dat, tablename = NULL, index = NULL,
- verbose = FALSE, test = FALSE, nastring = NULL,
- fast = TRUE)
更新已经存在的表格,需要包括已经存在的列。
——————————————————————————————————————————————
二、sqldf包
本包的学习来自CDA DSC课程,L2-R语言第四讲内容,由常老师主讲。与RODBC的区别在于,前面是直接调用数据库SQL中的数据;而该包是在R语言环境中,执行SQL搜索语言。
组合使用:RODBC从数据库读入环境,sqldf进行搜索(适合SQL大神)。
其他函数的类似功能可以看:R语言数据集合并、数据增减
1、SQL基本特点
SQL语句语句特点:先全局选择,再局部选择
Select * from sale where year=2010 and ...
where后面可以接很多,有比较运算符,算数运算符,逻辑运算符。
比较运算符号:=(等于,不是双引号);!=(不等于);>,<,>=,<=
算数运算符:*,/,+,-
逻辑运算符:&&(and,与), ||(or,或) ,!(,not非)
2、数据筛选与排序
数据筛选可以有subset函数,排序有order/sort函数
[html] view plain
copy
print?
- #选择表中指定列*/
- sqldf("select year,market,sale,profit from sale")
-
- #选择满足条件的行*/
- sqldf("select * from sale where year=2012 and market=‘东‘")
- #语句特点,先抽取全局数据,然后再执行局部选择
- #字符单引号,切记
-
- #对行进行排序*/
- sqldf("select year,market,sale,profit
- from sale
- order by year")
数据筛选:sqldf可以执行选择表中指定指标、满足条件的行(注意:抽取满足条件的行的字符时,字符型需要用单引号),语法结构是:
select 指标名称 from 数据集 where 某指标=条件
排序order:按照某变量排序,语法结构:
select 指标名称(或全部)from 数据集 order by 指标名称
3、数据合并——纵向连接
数据合并的方法很多,基本函数包中有merge、cbind/rbind,以及一些专业的包plyr、dplyr、data.table等
rbind/cbind对数据合并的要求比较严格:合并的变量名必须一致;数据等长;指标顺序必须一致。
sqldf就不会这么苛刻,并参照了一些集合查询的方法(关于基础包的集合查询可参考:R语言︱集合运算)。
(1)并——union
[html] view plain
copy
print?
- UNION3<-sqldf("select * from one union select * from two")
- #合并后去重,rbind是合并后不去重
- UNION_all<-sqldf("select * from one union all select * from two")
- #all可以支持,合并后不去重
rbind/cbind是将数据一股脑子全部帖在一起,只合并不去重;sqldf则可以自行选择,语法结构:
select * from 数据集1 union (all) select * from 数据集2
其中的all代表不去重,一起加进来。
(2)差(except)、交(Intersect)
[html] view plain
copy
print?
- #EXCEPT_差集
- #不存在all
- EXCEPT<-sqldf("select * from one EXCEPT select * from two")
-
- #INTERSECT——交集
- INTERSECT<-sqldf("select * from one INTERSECT select * from two")
差集就是找两个数据集的不同的数据,而且是数据集1中,去掉重复的数值;并集则是两个数据集的重合(去重可以用)之处。
4、数据合并——横向连接
横向连接有三种类型:交叉连接(笛卡尔乘积,大乱炖所有数据重新排列组合合并起来,一般在实验设计涉及全排列的时候可以很好地使用)、内连接(筛选匹配到的数据)、外连接。
其中,sqldf 中的右连接、全连接已经失效,一般情况下会大多选择左联结。
(1)内连接——匹配到完全一致的
[html] view plain
copy
print?
- > inner1<- merge(table1, table2, by = "id", all = F);inner1 #筛选相同id,F为只连接匹配到的,T为没有匹配到的赋值NA
- id a b
- 1 3 c e
- > inner2<-inner_join(table1, table2, by = "id");inner2 #与merge完全一致
- id a b
- 1 3 c e
-