时间:2021-07-01 10:21:17 帮助过:20人阅读
Flush LRU List Checkpoint
InnoDB要保证LRU列表中有100左右空闲页可使用。在InnoDB1.1.X版本前,要检查LRU中是否有足够的页用于用户查询操作线程,如果没有,会将LRU列表尾端的页淘汰,如果被淘汰的页中有脏页,会强制执行Checkpoint刷回脏页数据到磁盘,显然这会阻塞用户查询线程。从InnoDB1.2.X版本开始,这个检查放到单独的Page Cleaner Thread中进行,并且用户可以通过innodb_lru_scan_depth
控制LRU列表中可用页的数量,默认值为1024。
Async/Sync Flush Checkpoint
是指重做日志文件不可用时,需要强制将脏页列表中的一些页刷新回磁盘。这可以保证重做日志文件可循环使用。在InnoDB1.2.X版本之前,Async Flush Checkpoint会阻塞发现问题的用户查询线程,Sync Flush Checkpoint会阻塞所有查询线程。InnoDB1.2.X之后放到单独的Page Cleaner Thread。
Dirty Page Too Much Checkpoint
脏页数量太多时,InnoDB引擎会强制进行Checkpoint。目的还是为了保证缓冲池中有足够可用的空闲页。其可以通过参数innodb_max_dirty_pages_pct
来设置,默认为75%:
Innodb的事务日志是指Redo log,简称Log,保存在日志文件ib_logfile*里面。Innodb还有另外一个日志Undo log,但Undo log是存放在共享表空间里面的(ibdata*文件)。
由于Log和Checkpoint紧密相关,因此将这两部分合在一起分析。
名词解释:LSN,日志序列号,Innodb的日志序列号是一个64位的整型。
Log写入
LSN实际上对应日志文件的偏移量,新的LSN=旧的LSN + 写入的日志大小。举例如下:
LSN=1G,日志文件大小总共为600M,本次写入512字节,则实际写入操作为:
| --- 求出偏移量:由于LSN数值远大于日志文件大小,因此通过取余方式,得到偏移量为400M;
| --- 写入日志:找到偏移400M的位置,写入512字节日志内容,下一个事务的LSN就是1000000512;
Checkpoint写入
Innodb实现了Fuzzy Checkpoint的机制,每次取到最老的脏页,然后确保此脏页对应的LSN之前的LSN都已经写入日志文件,再将此脏页的LSN作为Checkpoint点记录到日志文件,意思就是“此LSN之前的LSN对应的日志和数据都已经写入磁盘文件”。恢复数据文件的时候,Innodb扫描日志文件,当发现LSN小于Checkpoint对应的LSN,就认为恢复已经完成。
Checkpoint写入的位置在日志文件开头固定的偏移量处,即每次写Checkpoint都覆盖之前的Checkpoint信息。
Flush刷新流程及原理介绍由于Checkpoint和日志紧密相关,将日志和Checkpoint一起说明,详细的实现机制如下:
如上图所示,Innodb的一条事务日志共经历4个阶段:
1) 创建阶段:事务创建一条日志;
2) 日志刷盘:日志写入到磁盘上的日志文件;
3) 数据刷盘:日志对应的脏页数据写入到磁盘上的数据文件;
4) 写CKP:日志被当作Checkpoint写入日志文件;
对应这4个阶段,系统记录了4个日志相关的信息,用于其它各种处理使用:
Log sequence number(LSN1):当前系统LSN最大值,新的事务日志LSN将在此基础上生成(LSN1+新日志的大小);
Log flushed up to(LSN2):当前已经写入日志文件的LSN;
Pages flushed up to(LSN3):当前最旧的脏页数据对应的LSN,写Checkpoint的时候直接将此LSN写入到日志文件;
Last checkpoint at(LSN4):当前已经写入Checkpoint的LSN;
对于系统来说,以上4个LSN是递减的,即: LSN1>=LSN2>=LSN3>=LSN4.
具体的样例如下(使用show engine innodb status \G命令查看)
[plain] view plain copy
Async/Sync Flush Checkpoint原理
Innodb的数据并不是实时写盘的,为了避免宕机时数据丢失,保证数据的ACID属性,Innodb至少要保证数据对应的日志不能丢失。对于不同的情况,Innodb采取不同的对策:
1)宕机导致日志丢失
Innodb有日志刷盘机制,可以通过innodb_flush_log_at_trx_commit参数进行控制;
2)日志覆盖导致日志丢失
Innodb日志文件大小是固定的,写入的时候通过取余来计算偏移量,这样存在两个LSN写入到同一位置的可能,后面写的把前面写得就覆盖了,以“写入机制”章节的样例为例,LSN=100000000和LSN=1600000000两个日志的偏移量是相同的了。这种情况下,为了保证数据一致性,必须要求LSN=1000000000对应的脏页数据都已经刷到磁盘中,也就是要求Last checkpoint对应的LSN一定要大于1000000000,否则覆盖后日志也没有了,数据也没有刷盘,一旦宕机,数据就丢失了。
为了解决第二种情况导致数据丢失的问题,Innodb实现了一套日志保护机制,详细实现如下:
上图中,直线代表日志空间(Log cap,约等于日志文件总大小*0.8,0.8是一个安全系数),Ckp age和Buf age是两个浮动的点,Buf async、Buf sync、Ckp async、Ckp sync是几个固定的点。各个概念的含义如下:
概念 | 计算 | 含义 |
Ckp age | LSN1- LSN4 | 还没有做Checkpoint的日志范围,若Ckp age超过日志空间,说明被覆盖的日志(LSN1-LSN4-Log cap)对应日志和数据“可能”还没有刷到磁盘上 |
Buf age | LSN1- LSN3 | 还没有将脏页刷盘的日志的范围,若Buf age超过日志空间,说明被覆盖的日志(LSN1-LSN3-Log cap)对应数据“肯定”还没有刷到磁盘上 |
Buf async | 日志空间大小 * 7/8 | 强制将Buf age-Buf async的脏页刷盘,此时事务还可以继续执行,所以为async,对事务的执行速度没有直接影响(有间接影响,例如CPU和磁盘更忙了,事务的执行速度可能受到影响) |
Buf sync | 日志空间大小 * 15/16 | 强制将2*(Buf age-Buf async)的脏页刷盘,此时事务停止执行,所以为sync,由于有大量的脏页刷盘,因此阻塞的时间比Ckp sync要长。 |
Ckp async | 日志空间大小 * 31/32 | 强制写Checkpoint,此时事务还可以继续执行,所以为async,对事务的执行速度没有影响(间接影响也不大,因为写Checkpoint的操作比较简单) |
Ckp sync | 日志空间大小 * 64/64 | 强制写Checkpoint,此时事务停止执行,所以为sync,但由于写Checkpoint的操作比较简单,即使阻塞,时间也很短 |
当事务执行速度大于脏页刷盘速度时,Ckp age和Buf age会逐步增长,当达到async点的时候,强制进行脏页刷盘或者写Checkpoint,如果这样做还是赶不上事务执行的速度,则为了避免数据丢失,到达sync点的时候,会阻塞其它所有的事务,专门进行脏页刷盘或者写Checkpoint。
因此从理论上来说,只要事务执行速度大于脏页刷盘速度,最终都会触发日志保护机制,进而将事务阻塞,导致MySQL操作挂起。
由于写Checkpoint本身的操作相比写脏页要简单,耗费时间也要少得多,且Ckp sync点在Buf sync点之后,因此绝大部分的阻塞都是阻塞在了Buf sync点,这也是当事务阻塞的时候,IO很高的原因,因为这个时候在不断的刷脏页数据到磁盘。例如如下截图的日志显示了很多事务阻塞在了Buf sync点:
原文blog:http://blog.csdn.net/melody_mr/article/details/48930739InnoDB Redo Flush及脏页刷新机制深入分析
标签:目的 系统 数值 gif 0.00 set arp lod 大于