()
3. 普通插入+手动提交+ prepareStatement方式
4. 批量插入:addBatch、executeBatch
5. 批量插入:insert into tableName (x,xx,xxx) values(x,xx,xxx),(xx,xxx,xxxx)…,
6. 多线程插入。
7. InnoDB引擎和MyISAM引擎的比较。
实验环境:
数据库:MySQL 5.0
机器硬件:
内存 3G
CPU AMD双核4400+ 2.3G
首先建立一个简单的user表:
CREATE TABLE `user` (
`id` varchar(50) NOT NULL,
`seqid` bigint(20) NOT NULL auto_increment,
`name` varchar(50) NOT NULL,
PRIMARY KEY (`seqid`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
一、普通插入
代码:
1

Connection conn=source.getConnection();
2

Statement s=conn.createStatement();
3

String sql="";
4

long start=System.currentTimeMillis();
5

for(int i=0;i<100000;i++)
6
{
7
sql="insert into user(id,name) value(‘"+(i+1)+"‘,‘chenxinhan‘)";
8
s.execute(sql);
9
}
10
s.close();
11
conn.close();
12
long end=System.currentTimeMillis();
13
System.out.println("commonInsert()执行时间为:"+(end-start)+"ms");
输出结果:
commonInsert()执行时间为:13828ms
二、普通插入+手动提交:setAutoCommit(false)、commit()
代码:
1

Connection conn=source.getConnection();
2

conn.setAutoCommit(false);
3

Statement s=conn.createStatement();
4

String sql="";
5

long start=System.currentTimeMillis();
6

for(int i=0;i<100000;i++)
7
{
8
sql="insert into user(id,name) value(‘"+(i+1)+"‘,‘chenxinhan‘)";
9
s.execute(sql);
10
}
11
conn.commit();
12
s.close();
13
conn.close();
14
long end=System.currentTimeMillis();
15
System.out.println("commonInsert()执行时间为:"+(end-start)+"ms");
输出结果:
commonInsert()执行时间为:13813ms
对比分析:
可以看出,仅仅是这种方式的设置,对性能的影响并不大。
三、普通插入+手动提交+ prepareStatement方式
代码:
1

Connection conn=source.getConnection();
2

conn.setAutoCommit(false);
3

PreparedStatement ps=conn.prepareStatement("insert into user(id,name) value(?,?)");
4

long start=System.currentTimeMillis();
5

for(int i=0;i<100000;i++)
6
{
7
ps.setString(1,(i+1)+"");
8
ps.setString(2,"chenxinhan");
9
ps.execute();
10
}
11
conn.commit();
12
ps.close();
13
conn.close();
14
long end=System.currentTimeMillis();
15
System.out.println("prepareStatementInsert()执行时间为:"+(end-start)+"ms");
输出结果:
prepareStatementInsert()执行时间为:12797ms
对比分析:
采用prepareStatement的方式确实可以提高一点性能,因为减少了数据库引擎解析优化SQL语句的时间,但是由于现在的插入语句太简单,所以性能提升不明显。
四、批量插入:addBatch、executeBatch
代码:
1

Connection conn=source.getConnection();
2

conn.setAutoCommit(false);
3

Statement s=conn.createStatement();
4

String sql="";
5

long start=System.currentTimeMillis();
6

for(int j=0;j<100;j++)
7
{
8
for(int i=0;i<1000;i++)
9
{
10
sql="insert into user(id,name) value(‘"+(i+1)+"‘,‘chenxinhan‘)";
11
s.addBatch(sql);
12
}
13
s.executeBatch();
14
conn.commit();
15
s.clearBatch();
16
}
17
s.close();
18
conn.close();
19
long end=System.currentTimeMillis();
20
System.out.println("batchInsert()执行时间为:"+(end-start)+"ms");
输出结果:
batchInsert()执行时间为:13625ms
对比分析:
按道理,这种批处理的方式是要快些的,但是测试结果却不尽人意,有点不解,请高人拍砖。
五、批量插入:insert into tableName (x,xx,xxx) values(x,xx,xxx),(xx,xxx,xxxx)…,
代码:
1

Connection conn=source.getConnection();
2

conn.setAutoCommit(false);
3

Statement s=conn.createStatement();
4

StringBuilder sql=new StringBuilder("");
5

long start=System.currentTimeMillis();
6

for(int j=0;j<100;j++)
7
{
8
sql=new StringBuilder("");
9
sql.append("insert into user(id,name) values ");
10
for(int i=0;i<1000;i++)
11
{
12
if(i==999)
13
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘)");
14
else
15
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘),");
16
}
17
s.execute(sql.toString());
18
conn.commit();
19
}
20
s.close();
21
conn.close();
22
long end=System.currentTimeMillis();
23
System.out.println("manyInsert()执行时间为:"+(end-start)+"ms");
输出结果:
manyInsert()执行时间为:937ms
对比分析:
发现采用这种方式的批量插入性能提升最明显,有10倍以上的性能提升。所以这种方式是我推荐的批量插入方式!
六、多线程插入
在第五种方式的基础上采用多线程插入。
代码:
1

final Connection conn=source.getConnection();
2

for(int j=0;j<3;j++)
3
{
4
Thread t=new Thread(){
5
@Override
6
public void run() {
7
try
8
{
9
long start=System.currentTimeMillis();
10
Statement s=conn.createStatement();
11
StringBuilder sql=new StringBuilder("");
12
for(int j=0;j<100;j++)
13
{
14
conn.setAutoCommit(false);
15
sql=new StringBuilder("");
16
sql.append("insert into user (id,name) values ");
17
for(int i=0;i<1000;i++)
18
{
19
if(i==999)
20
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘)");
21
else
22
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘),");
23
}
24
s.execute(sql.toString());
25
conn.commit();
26
}
27
s.close();
28
long end=System.currentTimeMillis();
29
System.out.println("multiThreadBatchInsert()执行时间为:"+(end-start)+"ms");
30
}
31
catch(Exception e)
32
{
33
e.printStackTrace();
34
}
35
}
36
};
37
t.start();
38
//t.join();
39
}
输出结果:
multiThreadBatchInsert()执行时间为:2437ms
multiThreadBatchInsert()执行时间为:2625ms
multiThreadBatchInsert()执行时间为:2703ms
注意:上面我采用的是三个线程插入30w条数据。
取最大时间为2703ms,较上面的937ms,基本还是三倍的时间。
所以发现此时多线程也解决不了批量数据插入问题。原因就是,这时候的性能瓶颈不是CPU,而是数据库!
七、InnoDB引擎和MyISAM引擎的比较
最后,分析一下,这两个引擎对批量数据插入的影响。
先建立user2数据表:
CREATE TABLE `user2` (
`id` varchar(50) NOT NULL,
`seqid` bigint(20) NOT NULL auto_increment,
`name` varchar(50) NOT NULL,
PRIMARY KEY (`seqid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
代码:
1

Connection conn=source.getConnection();
2

conn.setAutoCommit(false);
3

Statement s=conn.createStatement();
4

StringBuilder sql=new StringBuilder("");
5

long start=System.currentTimeMillis();
6

for(int j=0;j<100;j++)
7
{
8
sql=new StringBuilder("");
9
sql.append("insert into user2 (id,name) values ");
10
for(int i=0;i<1000;i++)
11
{
12
if(i==999)
13
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘)");
14
else
15
sql.append("(‘").append(i+1).append("‘,").append("‘cxh‘),");
16
}
17
s.execute(sql.toString());
18
conn.commit();
19
}
20
s.close();
21
conn.close();
22
long end=System.currentTimeMillis();
23
System.out.println("manyInsert2()执行时间为:"+(end-start)+"ms");
输出结果:
manyInsert2()执行时间为:3484ms
注意:第七项的代码和第五是一样的,除了数据表名称不同(user、user2)
但是,
InnoDB :3484ms
MyISAM:937ms
所以,MyISAM引擎对大数据量的插入性能较好。
总结:
对于大数据量的插入,建议使用insert into tableName (x,xx,xxx) values(x,xx,xxx),(xx,xxx,xxxx)…,的方式,引擎建议使用MyISAM引擎。
友情提醒:本博文章欢迎转载,但请注明出处:陈新汉
数据库批量数据插入问题分析
标签:varchar log blocks 结果 user 解决 on() 对比分析 硬件