当前位置:Gxlcms > 数据库问题 > PostgreSQL hstore 列性能提升一例

PostgreSQL hstore 列性能提升一例

时间:2021-07-01 10:21:17 帮助过:25人阅读

PostgreSQL 支持hstore 来存放KEY->VALUE这类数据, 事实上也相似于ARRAY或者JSON类型。  要高效的使用这类数据,当然离不开高效的索引。我们今天就来看看两类不同的索引对于同一种检索请求的性能问题。




假如我们有这样一个原始表。基于str1字段有一个BTREE索引。


t_girl=# \d status_check;
          Table "ytt.status_check"
 Column |         Type          | Modifiers 
--------+-----------------------+-----------
 is_yes | boolean               | not null
 str1   | character varying(20) | not null
 str2   | character varying(20) | not null
Indexes:
    "index_status_check_str1" btree (str1) 



里面有10W条记录。 数据大概例如以下。
t_girl=# select * from status_check limit 2;
 is_yes | str1 |         str2         
--------+------+----------------------
 f      | 0    | cfcd208495d565ef66e7
 t      | 1    | c4ca4238a0b923820dcc
(2 rows)


Time: 0.617 ms
t_girl=# 




存放hstore类型的status_check_hstore 表结构,基于str1_str2字段有一个GIST索引。
 Table "ytt.status_check_hstore"
  Column   |  Type   | Modifiers 
-----------+---------+-----------
 is_yes    | boolean | 
 str1_str2 | hstore  | 
Indexes:
    "idx_str_str2_gist" gist (str1_str2) 



t_girl=# select * from status_check_hstore limit 2;
 is_yes |          str1_str2          
--------+-----------------------------
 f      | "0"=>"cfcd208495d565ef66e7"
 t      | "1"=>"c4ca4238a0b923820dcc"
(2 rows)


Time: 39.874 ms




接下来我们要得到跟查询原始表一样的结果,当然原始表的查询很高效。 表语句以及结果例如以下,
t_girl=# select * from status_check where str1 in (‘10‘,‘23‘,‘33‘);        
 is_yes | str1 |         str2         
--------+------+----------------------
 t      | 10   | d3d9446802a44259755d
 t      | 23   | 37693cfc748049e45d87
 f      | 33   | 182be0c5cdcd5072bb18
(3 rows)


Time: 0.690 ms


上面的语句用了不到1毫秒。


接下来我们对hstore表进行查询。


t_girl=# select is_yes,skeys(str1_str2),svals(str1_str2) from status_check_hstore where str1_str2 ?| array[‘10‘,‘23‘,‘33‘];
 is_yes | skeys |        svals         
--------+-------+----------------------
 t      | 10    | d3d9446802a44259755d
 t      | 23    | 37693cfc748049e45d87
 f      | 33    | 182be0c5cdcd5072bb18
(3 rows)


Time: 40.256 ms


我的天。比原始表的查询慢了几十倍。


看下查询计划,把全部行都扫描了一遍。
                                    QUERY PLAN                                     
-----------------------------------------------------------------------------------
 Bitmap Heap Scan on status_check_hstore  (cost=5.06..790.12 rows=100000 width=38)
   Recheck Cond: (str1_str2 ?

| ‘{10,23,33}‘::text[]) -> Bitmap Index Scan on idx_str_str2_gist (cost=0.00..5.03 rows=100 width=0) Index Cond: (str1_str2 ?| ‘{10,23,33}‘::text[]) (4 rows) Time: 0.688 ms






我们想办法来优化这条语句, 假设把这条语句变成跟原始语句一样的话。那么是否就能够用到BTREE索引了?
接下来,建立一个基于BTREE的函数索引,


t_girl=# create index idx_str1_str2_akeys on status_check_hstore using btree (array_to_string(akeys(str1_str2),‘,‘));
CREATE INDEX
Time: 394.123 ms



OK,变化语句来运行下相同的检索,
t_girl=# select is_yes,skeys(str1_str2),svals(str1_str2) from status_check_hstore where array_to_string(akeys(str1_str2),‘,‘) in (‘10‘,‘23‘,‘33‘);        
 is_yes | skeys |        svals         
--------+-------+----------------------
 t      | 10    | d3d9446802a44259755d
 t      | 23    | 37693cfc748049e45d87
 f      | 33    | 182be0c5cdcd5072bb18
(3 rows)


Time: 0.727 ms




这次和原始查询速度一样快了。

PostgreSQL hstore 列性能提升一例

标签:character   heap   不同   odi   记录   ring   基于   res   相同   

人气教程排行