时间:2021-07-01 10:21:17 帮助过:330人阅读
基于sparksql调用shell脚本运行SQL,sparksql提供了类似hive中的 -e , -f ,-i的选项
1、定时调用脚本
#!/bin/sh # upload logs to hdfs yesterday=`date --date=‘1 days ago‘ +%Y%m%d` /opt/modules/spark/bin/spark-sql -i /opt/bin/spark_opt/init.sql --master spark://10.130.2.20:7077 --executor-memory 6g --total-executor-cores 45 --conf spark.ui.port=4075 -e "insert overwrite table st.stock_realtime_analysis PARTITION (DTYPE=‘01‘ ) select t1.stockId as stockId, t1.url as url, t1.clickcnt as clickcnt, 0, round((t1.clickcnt / (case when t2.clickcntyesday is null then 0 else t2.clickcntyesday end) - 1) * 100, 2) as LPcnt, ‘01‘ as type, t1.analysis_date as analysis_date, t1.analysis_time as analysis_time from (select stock_code stockId, concat(‘http://stockdata.stock.hexun.com/‘, stock_code,‘.shtml‘) url, count(1) clickcnt, substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),1,10) analysis_date, substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),12,8) analysis_time from dms.tracklog_5min where stock_type = ‘STOCK‘ and day = substr(from_unixtime(unix_timestamp(), ‘yyyyMMdd‘), 1, 8) group by stock_code order by clickcnt desc limit 20) t1 left join (select stock_code stockId, count(1) clickcntyesday from dms.tracklog_5min a where stock_type = ‘STOCK‘ and substr(datetime, 1, 10) = date_sub(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘),1) and substr(datetime, 12, 5) <substr(from_unixtime(unix_timestamp(),‘yyyy-MM-dd HH:mm:ss‘), 12, 5) and day = ‘${yesterday}‘ group by stock_code) t2 on t1.stockId = t2.stockId; " sqoop export --connect jdbc:mysql://10.130.2.245:3306/charts --username guojinlian --password Abcd1234 --table stock_realtime_analysis --fields-terminated-by ‘\001‘ --columns "stockid,url,clickcnt,splycnt,lpcnt,type" --export-dir /dw/st/stock_realtime_analysis/dtype=01;
add jar /opt/bin/UDF/hive-udf.jar; create temporary function udtf_stockidxfund as ‘com.hexun.hive.udf.stock.UDTFStockIdxFund‘; create temporary function udf_getbfhourstime as ‘com.hexun.hive.udf.time.UDFGetBfHoursTime‘; create temporary function udf_getbfhourstime2 as ‘com.hexun.hive.udf.time.UDFGetBfHoursTime2‘; create temporary function udf_stockidxfund as ‘com.hexun.hive.udf.stock.UDFStockIdxFund‘; create temporary function udf_md5 as ‘com.hexun.hive.udf.common.HashMD5UDF‘; create temporary function udf_murhash as ‘com.hexun.hive.udf.common.HashMurUDF‘; create temporary function udf_url as ‘com.hexun.hive.udf.url.UDFUrl‘; create temporary function url_host as ‘com.hexun.hive.udf.url.UDFHost‘; create temporary function udf_ip as ‘com.hexun.hive.udf.url.UDFIP‘; create temporary function udf_site as ‘com.hexun.hive.udf.url.UDFSite‘; create temporary function udf_UrlDecode as ‘com.hexun.hive.udf.url.UDFUrlDecode‘; create temporary function udtf_url as ‘com.hexun.hive.udf.url.UDTFUrl‘; create temporary function udf_ua as ‘com.hexun.hive.udf.useragent.UDFUA‘; create temporary function udf_ssh as ‘com.hexun.hive.udf.useragent.UDFSSH‘; create temporary function udtf_ua as ‘com.hexun.hive.udf.useragent.UDTFUA‘; create temporary function udf_kw as ‘com.hexun.hive.udf.url.UDFKW‘; create temporary function udf_chdecode as ‘com.hexun.hive.udf.url.UDFChDecode‘;
--conf spark.ui.port=4075
默觉得4040,会与其它正在跑的任务冲突,这里改动为4075
设定任务使用的内存与CPU资源
--executor-memory 6g --total-executor-cores 45
原来的语句是用hive -e 运行的,改动为spark后速度大加快了。
原来为15min,提升速度后为 45s.
基于sparksql调用shell脚本运行SQL
标签:site ssh mod overwrite when cli char data- comm