当前位置:Gxlcms > 数据库问题 > oracle sql 高级编程 历史笔记整理

oracle sql 高级编程 历史笔记整理

时间:2021-07-01 10:21:17 帮助过:12人阅读

WHEN order_total < 100000 THEN

INTO small_orders

WHEN order_total > 100000 AND order_total < 200000 THEN

INTO medium_orders

ELSE

INTO large_orders

SELECT order_id, order_total, sales_rep_id, customer_id

FROM orders;

 

 

 

INSERT FIRST

WHEN ottl < 100000 THEN

INTO small_orders

VALUES(oid, ottl, sid, cid)

WHEN ottl > 100000 and ottl < 200000 THEN

INTO medium_orders

VALUES(oid, ottl, sid, cid)

WHEN ottl > 290000 THEN

INTO special_orders

WHEN ottl > 200000 THEN

INTO large_orders

VALUES(oid, ottl, sid, cid)

SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,

o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem

FROM orders o, customers c

WHERE o.customer_id = c.customer_id;

 

  • Merge(复杂的update语句可以用merge实现,不记update了)

     

MERGE INTO bonuses D

USING (SELECT employee_id, salary, department_id FROM employees

WHERE department_id = 80) S

ON (D.employee_id = S.employee_id)

WHEN MATCHED THEN UPDATE SET D.bonus = D.bonus + S.salary*.01

DELETE WHERE (S.salary > 8000)

WHEN NOT MATCHED THEN INSERT (D.employee_id, D.bonus)

VALUES (S.employee_id, S.salary*0.1)

WHERE (S.salary <= 8000);

oracle sql 高级编程 第2章 sql执行

1.sql执行步骤:
验证--->查询转换--->确定执行计划--->执行sql并取得结果


2.查询转换 /*+ no_query_transformation */
视图合并(在select中是视图) /*+ no_merge */
子查询解嵌套(在where中是子查询) /*+ no_unnest */
谓语前推(最常用 最好用)
利用物化视图进行查询重写

3. 对于这几种的控制,大部分情况下谓语前推肯定是要允许的,试图合并也是应该的,子查询解嵌套的应用场景较少,只在子查询保证关联列的唯一性的时候才可使用,否则会影响结果的行数。物化视图没用过,不过如果有物化视图,进行重写肯定不应该禁止的。

20130910 周二

oracle sql 高级编程 第3章 访问和连接方法

1.全表扫描或者索引扫描
2.数据块是最小单元 一张表的高水位线是最后一块有数据写入的数据块
删除了部分数据之后,高水位线不会立刻跌落到删除后的位置。但是执行全表扫描时,将会一直扫描到高水位线处为止,可能包含空白数据。所以说如果执行了大数据的删除,最还重新对表生成统计信息。
3.获取表分配的数据块数:
select blocks from user_segments where segment_name = ‘@table_name‘
4.获取实际的有数据的数据数据块数:
select count(distinct dbms_rowid.rowid_block_number(rowid)) from table_name;
5.索引的聚簇因子 索引代表的列的不同值在数据块中的分布情况 紧凑还是稀疏 越紧凑越适合使用索引扫描方式 聚簇因子代表数据的存储分布情况 重建索引不能改变据簇因子的值


联接方法:
嵌套循环联接:nested loops 特点:如果有一张表的数据较少可以作为驱动表的话 适合使用这种联接
排序合并联接:sort join merge join 特点排序的开销比较大,如果表过大的话,在使用内存的同时会使用临时磁盘空间,所以对资源比较消耗,但是 如果两张表比较大 而且联接条件是非等式的时候,这种联接就是唯一的选择了。
散列联接:hash join 特点:两张表都比较大 并且是等联接的情况下,使用这个。
笛卡尔联接。

 

一大一小:嵌套循环

两个都大的等连:散列连接

两个都打的不等连接:排序合并

20130911周三

oracle sql 高级编程 第四章 sql是关于集合的

1.面向集合的角度思考问题
2.执行计划中的filter操作
执行过滤操作
如果filter下面针对的是一张表,那么就是简单的过滤
如果filter下面针对的是两张表,那么就是以第一张表为驱动表,驱动表中的每一行,都要执行第二张表(内层表)的查询一次,效率极低。这种情况一般用在in,exist的关联子查询并且无法解嵌套的情况。
3.union minus intersect操作都会默认执行类似distinct一样的去除重复行的操作。Union all不会。
4.在集合操作(union minus intersect)和group by操作中,null会作为一个特定的值来运算,在这些操作中null = null。
5.在sum avg count中将忽略null。

20130912周四

oracle sql 开发指南 第7章 高级查询

概括:对某个区间(全表 partition by之后的分组 自定义的窗口)执行row_number sum count min max avg first_value last_value

lag lead等操作。可以获得区间的行号,前几个后几个的值,第一个最后一个的值,sum等统计信息。

 

以下示例中红色是可选的

1.row_number函数 不接受参数 返回行号

select row_number() over (partition by col1 order by col2) from table_name;

如果有group by,将会先执行group by,在执行窗口操作,那么col1和col2必须是group by之后可以出现在select中的有效列。

2.窗口函数:窗口函数是在一个自定义的"窗口"中执行sum count min max avg first_value last_value等函数,这些函数都要传递一个列名作为参数。

定义窗口:

partition by col2 order by col1 rows between (current row)/(unbounded/123.. preceding) and (current row)/(unbounded/123.. following)

例如:

select sum(col1) over (order by col2 rows between unbounded preceding and current row) from table_name;

3.报表函数:对partition by的结果集执行sum count min max avg。这和group by的效果是一样的,只不过group by限制结果集中只能包含group by的列和sum count等列。而报表函数能够打破这个限制。例如:

select s.*,sum(s.col1) over(partiton by s.col2),sum(s.col3) over(partiton by s.col4) from table_name s;

4.lag和lead 获取前面第n个的值 或者 后面第n个的值 不能用在窗口函数中,只能over(partition by col2 order by col1)

例如:

select lead(col1) over (order by col2) from table_name;

oracle sql 高级编程 第6章 执行计划

如何获取实际的执行计划:

select /*+ gather_plan_statistics pub_organ_sig */ * from pub_organ o where o.organ_code like ‘2562%‘;

select * from v$sql s where s.SQL_TEXT like ‘%pub_organ_sig%‘

 

select * from table(dbms_xplan.display_cursor(‘2cg64wudvfkr6‘,null,‘ALLSTATS LAST -COST -BYTES‘));

 

PLAN_TABLE_OUTPUT

SQL_ID 2cm7ax09dcpjf, child number 0

-------------------------------------

select /*+ gather_plan_statistics pub_organ_sig */ * from pub_organ o where

o.organ_code like ‘2562%‘

 

Plan hash value: 33305308

 

-----------------------------------------------------------------------------------------

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

-----------------------------------------------------------------------------------------

|* 1 | TABLE ACCESS FULL| PUB_ORGAN | 1 | 2 | 0 |00:00:00.01 | 240 |

-----------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

 

1 - filter("O"."ORGAN_CODE" LIKE ‘2562%‘)

 

 

 

E-Rows : expect rows 预测的行

A-Rows : actual rows 实际的行

如果A-Rows比E-Rows小的多,那么需要重新生成统计信息。

重新生成统计信息:

在命令窗口中执行: EXEC dbms_stats.gather_table_stats(user,‘PUB_ORGAN‘,estimate_percent => 100, cascade => TRUE,method_opt => ‘FOR ALL COLUMNS SIZE 1‘);

在sql窗口中执行: begin dbms_stats.gather_table_stats(user,‘PUB_ORGAN‘,estimate_percent => 100, cascade => TRUE,method_opt => ‘FOR ALL COLUMNS SIZE 1‘); end;

 

begin dbms_stats.gather_table_stats方法:

 

This procedure gathers table and column (and index) statistics. It attempts to

parallelize as much of the work as possible, but there are some restrictions as

described in the individual parameters.

 

用来生成表,列,索引的统计信息。

所有参数:

DBMS_STATS.GATHER_TABLE_STATS (

ownname VARCHAR2,

tabname VARCHAR2,

partname VARCHAR2 DEFAULT NULL,

estimate_percent NUMBER DEFAULT to_estimate_percent_type

(get_param(‘ESTIMATE_PERCENT‘)),

block_sample BOOLEAN DEFAULT FALSE,

method_opt VARCHAR2 DEFAULT get_param(‘METHOD_OPT‘),

degree NUMBER DEFAULT to_degree_type(get_param(‘DEGREE‘)),

granularity VARCHAR2 DEFAULT GET_PARAM(‘GRANULARITY‘),

cascade BOOLEAN DEFAULT to_cascade_type(get_param(‘CASCADE‘)),

stattab VARCHAR2 DEFAULT NULL,

statid VARCHAR2 DEFAULT NULL,

statown VARCHAR2 DEFAULT NULL,

no_invalidate BOOLEAN DEFAULT to_no_invalidate_type (

get_param(‘NO_INVALIDATE‘)),

force BOOLEAN DEFAULT FALSE);

 

具体参数用途介绍:

 

ownname:表所属是用户的用户名。

tabname:表名。

estimate_percent: 采样的数据百分比。0.00001-100的数值。如果不传入此参数 ,oracle将会使用oracle认为最有的值进行分析,如果传入null,将分析全部数据。相当于传入100.如果不传入此参数,oracle将会是用get_param(‘ESTIMATE_PERCENT‘),此函数返回DBMS_STATS.AUTO_SAMPLE_SIZE常量值,此值为0.也就是说,传入0时,将有oracle决定最有的百分比。

cascade :是否统计索引信息。详细英文文档解释:Gather statistics on the indexes for this table. Index statistics gathering is not parallelized. Using this option is equivalent to

running the GATHER_INDEX_STATS Procedure on each of th

table‘s indexes. Use the constant DBMS_STATS.AUTO_

CASCADE to have Oracle determine whether index statistics to

be collected or not. This is the default. The default value can b

changed using theSET_PARAM Procedure.

degree:并行度。

method_opt 统计那些列需要统计:

■ FOR ALL [INDEXED | HIDDEN] COLUMNS [size_

clause]

■ FOR COLUMNS [size clause] column|attribut

[size_clause] [,column|attribute [size_

clause]...]

size_clause is defined as size_clause := SIZ

{integer | REPEAT | AUTO | SKEWONLY}

- integer : Number of histogram buckets. Must be in the

range [1,254].

- REPEAT : Collects histograms only on the columns that

already have histograms.

- AUTO : Oracle determines the columns to collect histogram

based on data distribution and the workload of the columns

- SKEWONLY : Oracle determines the columns to collect

histograms based on the data distribution of the columns.

The default is FOR ALL COLUMNS SIZE AUTO.The defaul

value can be changed using the SET_PARAM Procedure.

20130930周一

oracle sql 开发指南 第7章 高级查询

  • sql的执行步骤:where操作---group by操作---having---窗口操作---order by操作。所以说窗口操作时在过滤和分组之后的结果集上执行的。
  • 窗口函数的常用功能:

计算累计和

计算移动平均值

计算中心平均值

获取上一条(第一条),下一条(最后一条)记录的值。

报表函数

  • first_value() last_value()与lag lead的区别:

前者:

获取上一条的值:

select z.zyear,

z.zmonth,

z.jxzbid,

count(1),

first_value(count(1)) over(order by z.zyear, z.zmonth, z.jxzbid rows between 1 preceding and current row)

from Z00HRJDWWCZ z

group by z.zyear, z.zmonth, z.jxzbid

order by z.zyear, z.zmonth, z.jxzbid

 

获取第一条的值:

select z.zyear,

z.zmonth,

z.jxzbid,

count(1),

first_value(count(1)) over(order by z.zyear, z.zmonth, z.jxzbid)

from Z00HRJDWWCZ z

group by z.zyear, z.zmonth, z.jxzbid

order by z.zyear, z.zmonth, z.jxzbid

 

lag获取上一条的值:

select z.zyear,

z.zmonth,

z.jxzbid,

count(1),

lag(count(1),1) over(order by z.zyear, z.zmonth, z.jxzbid)

from Z00HRJDWWCZ z

group by z.zyear, z.zmonth, z.jxzbid

order by z.zyear, z.zmonth, z.jxzbid

 

如果没有上一个,lag取出来为空,而first_value取出来为当前行的值。

lag不支持开窗子句。

  • 报表函数

报表函数可以无障碍的对自定义的分组执行sum等统计操作。

如:

select z.zyear,

z.zmonth,

z.jxzbid,

count(1) over(partition by z.zyear),--当前年有多少条

count(1) over(partition by z.zmonth),--当前月有多少条

count(1) over(partition by z.jxzbid)--当前指标有多少条

from Z00HRJDWWCZ z

order by z.zyear, z.zmonth, z.jxzbid

 

oracle sql 高级编程 第7章 高级分组

  • Group by不能保证排序。必须加order by。

20131008 周二

oracle sql 高级编程 第8章 分析函数

  • group by会缩减行数,分析函数会保持行数不变。
  • partition by字句中的列支持谓语前推,但是order by中的列不支持。如:

PLAN_TABLE_OUTPUT

SQL_ID ab4nygf153qa5, child number 0

-------------------------------------

with max_v as (select /*+ gather_plan_statistics zjf_flag */ t.zyear, t.zmonth, max(t.bndywcz)

over(partition by t.zyear order by t.zmonth) from Z00HRJDWWCZ t) select * from max_v v where v.zyear =

‘2011‘ and v.zmonth = ‘2‘

 

Plan hash value: 1995484584

 

------------------------------------------------------------------------------------------------------------------------

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | O/1/M |

------------------------------------------------------------------------------------------------------------------------

|* 1 | VIEW | | 1 | 4053 | 100 |00:00:00.01 | 38 | | | |

| 2 | WINDOW SORT | | 1 | 4053 | 1981 |00:00:00.01 | 38 | 160K| 160K| 1/0/0|

|* 3 | TABLE ACCESS FULL| Z00HRJDWWCZ | 1 | 4053 | 4053 |00:00:00.01 | 38 | | | |

------------------------------------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

 

1 - filter("V"."ZMONTH"=‘2‘)

3 - filter("T"."ZYEAR"=‘2011‘)

 

 

filter("V"."ZMONTH"=‘2‘)操作是在window操作之后执行的,没有执行谓语前推。此种情况下ZMONTH的索引也不会被使用到。

 

 

oracle sql 高级编程 第10章 子查询因子化

  • 只能用as,不能用is。子查询用括号括起来,各个子查询中间用逗号分隔。最后一个不加逗号.
  • inline 内联视图,materialize 临时物化视图。

oracle sql 高级编程 第10章 子查询因子化

  • 执行计划中字段的说明:
    Starts:当前操作的执行次数。
    E-Rows:当前操作预计返回的行数
    A-Rows :当前操作在实际运行时返回的行数
    A-Time:当前操作在实际运行是耗费的时间
    Buffers:当前操作在执行期间进行的逻辑读操作数量(从buffer中读取 如果没有 就执行物理读)
    Reads:当前操作在执行期间进行的物理读操作数量(从磁盘读入buffer)
    OMem:最优执行时所需内存的预估值
    1Mem:一次通过所需内存的预估值
    Used-Mem:最后一次操作使用的内存量
  • 编写sql的时候:
    2.1、 对于复杂的sql,尽量使用子查询因子化进行拆分。这样看起来一目了然。
    2.2、 对于拆分后的子查询,不需要刚开始就加上materialize进行优化。oracle会自动选择是否创建临时表来缓存子查询的结果集来进行最优的查询。如果oracle没有给出最优的速度,可以考虑使用materialize进行优化。

20131011 周五

oracle sql 高级编程 第11章 半连接

  • in和= any是一模一样的。
  • 半连接的执行计划是在普通的哈希联接 循环迭代联接 等的基础上,加上semi,而反连接是加上anti。这两种是专门为in ,exist, not in,not exist准备的高效的执行计划。低效的处理in ,exists、, not in,not exists的 执行计划是filter。
  • 在or中使用in exists将不会使用半连接执行计划,而是filter。如

PLAN_TABLE_OUTPUT

SQL_ID arcp0y6pauqmc, child number 0

-------------------------------------

select /*+ gather_plan_statistics zjf_flag */ * from pub_functions s where

s.function_name like ‘%YJKH%‘ or exists (select null from pub_resources f where

s.function_id = f.function_id)

 

Plan hash value: 21887211

 

----------------------------------------------------------------------------------------------

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

----------------------------------------------------------------------------------------------

|* 1 | FILTER | | 1 | | 100 |00:00:00.01 | 1297 |

| 2 | TABLE ACCESS FULL| PUB_FUNCTIONS | 1 | 383 | 102 |00:00:00.01 | 5 |

|* 3 | TABLE ACCESS FULL| PUB_RESOURCES | 102 | 2 | 100 |00:00:00.01 | 1292 |

----------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

 

1 - filter(("S"."FUNCTION_NAME" LIKE ‘%YJKH%‘ OR IS NOT NULL))

3 - filter("F"."FUNCTION_ID"=:B1)

 


使用(不加not的)in 还是exists,对于性能不会有影响。oralce会根据查询的特点,自动选择半连接,如果不能选择半连接,就使用filter,但这跟in或者exists的取舍已经无关了。

  • 不要使用not in,使用 not exists。原因:not in大部分情况下不是我们想要的结果,因为null的问题。而且在oralce 11g之前(在11g中 有专门处理含空值的反连接的执行计划 anti na),如果oracle不能确保子查询的结果集不包含null值,就不会使用反连接,而是filter。如我将pub_resource的function_id列改为可为空之后,下列sql的执行计划是(甚至加上is not null都没用 我都被惊呆了):

PLAN_TABLE_OUTPUT

SQL_ID as36cfwft7khf, child number 0

-------------------------------------

select /*+ gather_plan_statistics zjf_flag1 */ * from pub_functions s where

s.function_id not in (select f.function_id from pub_resources f )

 

Plan hash value: 21887211

 

----------------------------------------------------------------------------------------------

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |

----------------------------------------------------------------------------------------------

|* 1 | FILTER | | 1 | | 8 |00:00:00.03 | 9572 |

| 2 | TABLE ACCESS FULL| PUB_FUNCTIONS | 1 | 383 | 376 |00:00:00.01 | 7 |

|* 3 | TABLE ACCESS FULL| PUB_RESOURCES | 376 | 2 | 368 |00:00:00.03 | 9565 |

----------------------------------------------------------------------------------------------

 

Predicate Information (identified by operation id):

---------------------------------------------------

 

1 - filter( IS NULL)

3 - filter(L

人气教程排行