时间:2021-07-01 10:21:17 帮助过:11人阅读
转自:http://time-track.cn/postgresql-window-function.html
PostgreSQL提供了窗口函数的特性。窗口函数也是计算一些行集合(多个行组成的集合,我们称之为窗口window frame)的数据,有点类似与聚集函数(aggregate function)。但和常规的聚集函数不同的是,窗口函数不会将参与计算的行合并成一行输出,而是保留它们原来的样子。看下面一个例子:
有一个表示员工薪资的表(部门、员工id,工资):
postgres=# d empsal Table "public.empsal" Column | Type | Modifiers ---------+-------------------+----------- depname | character varying | empno | integer | salary | integer |
表内现在有如下数据:
postgres=# select * from empsal ; depname | empno | salary -----------+-------+-------- develop | 11 | 5200 develop | 7 | 4200 develop | 9 | 4500 develop | 8 | 6000 develop | 10 | 5200 personnel | 5 | 3500 personnel | 2 | 3900 sales | 3 | 4800 sales | 1 | 5000 sales | 4 | 4800 (10 rows)
我们现在想将每个员工的工资与他所在部门的平均工资进行比较,SQL语句该如何写?利用窗口函数,该查询可以很容易的实现:
postgres=# SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsal; depname | empno | salary | avg -----------+-------+--------+----------------------- develop | 11 | 5200 | 5020.0000000000000000 develop | 7 | 4200 | 5020.0000000000000000 develop | 9 | 4500 | 5020.0000000000000000 develop | 8 | 6000 | 5020.0000000000000000 develop | 10 | 5200 | 5020.0000000000000000 personnel | 5 | 3500 | 3700.0000000000000000 personnel | 2 | 3900 | 3700.0000000000000000 sales | 3 | 4800 | 4866.6666666666666667 sales | 1 | 5000 | 4866.6666666666666667 sales | 4 | 4800 | 4866.6666666666666667 (10 rows)
可以看到,聚集函数avg的含义没有变,仍然是求平均值。但和普通的聚集函数不同的是,它不再对表中所有的salary求平均值,而是对同一个部门(PARTITION BY指定的depname)内的salary求平均值,而且得到的结果由同一个部门内的所有行共享,并没有将这些行合并。为了更好的体现普通聚集函数与窗口函数中的聚集函数的区别,再看下面的两个查询:
postgres=# SELECT avg(salary) FROM empsal; avg ----------------------- 4710.0000000000000000 (1 row) postgres=# SELECT avg(salary) OVER (PARTITION BY depname) FROM empsal; avg ----------------------- 5020.0000000000000000 5020.0000000000000000 5020.0000000000000000 5020.0000000000000000 5020.0000000000000000 3700.0000000000000000 3700.0000000000000000 4866.6666666666666667 4866.6666666666666667 4866.6666666666666667 (10 rows)
窗口函数总是包含OVER子句,它指定了窗口函数的名字和参数,也是由这个关键字来区分常规聚集函数和窗口函数。OVER子句里面的内容决定窗口函数即将处理的数据该如何划分。在OVER子句里面我们使用PARTITION BY将数据划分成一个个的组(或者称之为分区)。聚集函数处理的时候以分区为单位进行处理,处理结果也由同一个分区内的所有行共享。比如上面的例子,PARTITION BY后面跟着的字段是depname,所以avg函数将以部门为单位进行计算。其实,这个分区就是窗口(window frame),这也是窗口函数名字的由来。
我们还可以在一个窗口中使用ORDER BY来对输出进行排序:
postgres=# SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsal; depname | empno | salary | rank -----------+-------+--------+------ develop | 8 | 6000 | 1 develop | 10 | 5200 | 2 develop | 11 | 5200 | 2 develop | 9 | 4500 | 4 develop | 7 | 4200 | 5 personnel | 2 | 3900 | 1 personnel | 5 | 3500 | 2 sales | 1 | 5000 | 1 sales | 3 | 4800 | 2 sales | 4 | 4800 | 2 (10 rows)
窗口函数处理的行来自于FROM子句产生的“virtual table”,如果还有WHERE、GROUP BY、HAVING子句的话,还要经过这些条件的过滤,符合条件的子句才会作为窗口函数的输入。另外,一个查询可以包含多个窗口函数。
刚才提到,我们使用PARTITION BY来划分窗口,如果省略了该关键字,那么整个表将作为一个窗口来处理:
postgres=# SELECT salary, sum(salary) OVER () FROM empsal; salary | sum --------+------- 5200 | 47100 4200 | 47100 4500 | 47100 6000 | 47100 5200 | 47100 3500 | 47100 3900 | 47100 4800 | 47100 5000 | 47100 4800 | 47100 (10 rows)
但是,需要注意的是,如果在OVER子句中省略了PARTITION BY但却包含了ORDER BY子句,情况将和上面不太一样:
postgres=# SELECT salary, sum(salary) OVER(ORDER BY salary ) FROM empsal; salary | sum --------+------- 3500 | 3500 3900 | 7400 4200 | 11600 4500 | 16100 4800 | 25700 4800 | 25700 5000 | 30700 5200 | 41100 5200 | 41100 6000 | 47100 (10 rows)
从结果可以看出,在省略了PARTITION BY但却包含了ORDER BY子句的情况下,并不是整个表是一个窗口,而是将从最低(此例中是salary,所以这里用最低这个词)的行当前行作为一个窗口。这是要特别注意的。
最后,我们要注意窗口函数使用的场景:
如果我们真的需要将窗口函数作为某个子句的输入的话,我们可以构造一个SELECT子句,比如:
SELECT depname, empno, salary FROM (SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos FROM empsal ) AS ss WHERE pos < 3; postgres=# SELECT depname, empno, salary postgres-# FROM postgres-# (SELECT depname, empno, salary, postgres(# rank() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos postgres(# FROM empsal postgres(# ) AS ss postgres-# WHERE pos < 3; depname | empno | salary -----------+-------+-------- develop | 8 | 6000 develop | 10 | 5200 personnel | 2 | 3900 personnel | 5 | 3500 sales | 1 | 5000 sales | 3 | 4800 (6 rows)
如果一个查询中包含多个窗口函数,那么我们可以写多个OVER子句,但如果这些窗口函数的作用是一样的,那分开写多个既是一种重复性工作,而且也容易出错。这种情况下,我们可以将窗口里面的内容写成一个WINDOW子句,然后在多个OVER子句中引用。看下例中的两种写法:
第一种: SELECT sum(salary) OVER (PARTITION BY depname ORDER BY salary DESC), avg(salary) OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsal; postgres=# SELECT sum(salary) OVER (PARTITION BY depname ORDER BY salary DESC), avg(salary) OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsal; sum | avg -------+----------------------- 6000 | 6000.0000000000000000 16400 | 5466.6666666666666667 16400 | 5466.6666666666666667 20900 | 5225.0000000000000000 25100 | 5020.0000000000000000 3900 | 3900.0000000000000000 7400 | 3700.0000000000000000 5000 | 5000.0000000000000000 14600 | 4866.6666666666666667 14600 | 4866.6666666666666667 (10 rows) 第二种: SELECT sum(salary) OVER w, avg(salary) OVER w FROM empsal WINDOW w AS (PARTITION BY depname ORDER BY salary DESC); postgres=# SELECT sum(salary) OVER w, avg(salary) OVER w postgres-# FROM empsal postgres-# WINDOW w AS (PARTITION BY depname ORDER BY salary DESC); sum | avg -------+----------------------- 6000 | 6000.0000000000000000 16400 | 5466.6666666666666667 16400 | 5466.6666666666666667 20900 | 5225.0000000000000000 25100 | 5020.0000000000000000 3900 | 3900.0000000000000000 7400 | 3700.0000000000000000 5000 | 5000.0000000000000000 14600 | 4866.6666666666666667 14600 | 4866.6666666666666667 (10 rows)
PostgreSQL窗口函数(转)
标签:track 部门 body ram 注意 html 例子 order by win