当前位置:Gxlcms > 数据库问题 > YDB基本使用详解(转)

YDB基本使用详解(转)

时间:2021-07-01 10:21:17 帮助过:38人阅读

                  Connection conn = DriverManager.getConnection("jdbc:hive2://ydbmaster:10009/default", "hdfs", "");

                  Statement smst = conn.createStatement();

                  ResultSet rs = smst.executeQuery("/*ydb.pushdown(‘->‘)*/ select * from ydb_example_shu where ydbpartion = ‘3000w‘ limit 10 /*(‘<-‘)pushdown.ydb*/");

                  ResultSetMetaData m = rs.getMetaData();

                  int columns = m.getColumnCount();

                  for (int i = 1; i <= columns; i++) {

                           System.out.print(m.getColumnName(i));

                           System.out.print("\t\t");

                  }

                  while (rs.next()) {

                           for (int i = 1; i <= columns; i++) {

                                    System.out.print(rs.getString(i));

                                    System.out.print("\t\t");

                           }

                           System.out.println();

                  }

                  rs.close();

                  conn.close();

依赖的JDBC客户端jar包可以从这个地址获取,本质上就是HIVE的thrift接口,依赖的jar包也是Hive的jar包

http://url.cn/42R4CG8

 

技术分享

 

 

 

3.通过可视化SQL分析统计接入

SQL分析工具有很多,只要支持HIVE接口即可,免费的有Squirrel、收费的有DbVisualizer等

 

技术分享

技术分享

4.通过报表分析工具接入

通过可视化报表分析工具,可以极大的提高程序开发的效率,只要是支持HIVE接口的可视化报表工具,都可以与YDB集成,下面以帆软报表为例。

 

技术分享

技术分享

技术分享

技术分享

 

 

 

五、YDB分区

1.关于分区的说明

       随着时间的日积月累,单个索引会越来越大,从而导致系统瓶颈。YDB不会将全部的数据都完整的创建在一个索引中,YDB会对数据进行分区,分区的方式由用户来定义,可以按照日期分区,也可以按照某些固定的HASH方式来分区。

       一条数据的分区,在导入的时候直接指定,具体请参考后面的数据导入用法。

       如果按照日期进行分区,每天就会生成一个分区,如需查询哪天的数据,就去对应的分区中检索,其他的分区则闲置。

       YDB 的SQL需要通过ydbpartion来指定分区; SQL查询必须要设置分区,而且要写在SQL的最外层。

       如果没有指定ydbpartion分区的查询,ydb表默认会去查询 " ydb_default_partion" 这个分区,也就是说,如果我们真的不想进行数据分区,不想在sql上添加ydbpartion的条件来指定分区,那么请将数据都导入到 " ydb_default_partion"这个分区里面。

 

设置分区例子如下:

 ydbpartion =‘20140928‘

 ydbpartion in (‘20140928‘,‘20140927‘)

目前不支持大于等于,小于等于的范围指定分区,仅支持等于与in的方式。

 

2.关于分区的数量与粒度,控制多少比较好?

l如果我们的数据可以按照时间进行切分,是不是切分的越细越好?

       很遗憾,YDB并不适合特别多的分区,分区越多代表索引文件越多

1)YDB中打开一个索引是有很大的开销的,打开一个索引加载的列的信息、索引的BlockTree的相关主干节点等,需要消耗较多的内存,而且要持久化到内存里去维护这个索引的状态。这就是为什么大家会发现,对于一个表第一次查询会比较慢,但是我们进行一次count以后,在进行别的查询就会快很多。

2)YDB在一个进程里能够打开的索引数量是有限的,如果超过了打开的索引文件数量,那么就要关闭一些索引,以保证内存不会OOM。

3)小文件太多,对HDFS的NameNode的压力较大。

 

l那么分区粒度控制在多少为好?

基本原则就是在避免索引频繁的打开与关闭的情况下,索引粒度越小越好。

1)如果我们的数量不是很大,一年加在一起还不到10亿,那么我就建议采用按年分区。

2)如果我们的数据处于中等,每月的数据增量为1亿左右,那么我们建议按照季度分区。

3)如果我们的数据每天写入量特别大,如果按照月份分区,单个索引太大会造成写入瓶颈,那么我们建议按照天进行分区。

很多时候我们还可以根据不同的查询方式,采用两种粒度的分区

1)最近一两天的数据经常被查询,我们最近3天的数据按照天进行分区

2)但是偶尔也会发生查询整年的数据,如果采用按天分区的话,一次打开的索引太多,那么我们可以再加一个按照季度的分区。

3)按天的数据分区只保存最近7天的数据,超过7天的数据会通过insert的方式归档按照季度的分区里。

      

 

六、YDB的数据类型

1.基本类型

基本类型的存储方式均为 按列存储

YDB类型

只索引

只存储

Hive类型

解释

string

synn

---

string

字符串类型,该类型不分词,通常用来存储比较短的字符串,如类目

tint

tiynn

---

int

整形32位-适合大范围的range过滤查询

tlong

tlynn

---

bigint

整形64位-适合大范围的range过滤查询

tdouble

tdynn

---

double

Double类型-适合大范围的range过滤查询

tfloat

tfynn

---

float

Float类型-适合大范围的range过滤查询

int

iynn

---

int

整形32位,占用存储空间少,但是范围查找性能低

long

lynn

---

bigint

整形64位,占用存储空间少,但是范围查找性能低

double

dynn

---

double

Double类型,占用存储空间少,但是范围查找性能低

float

fynn

---

float

Float类型,占用存储空间少,但是范围查找性能低

geopoint

---

---

bigint

用于地理位置搜索-使用方法详见《26.地理位置感知搜索.txt》

 

2.分词类型

       分词( Word Segmentation) 指的是将一个词字序列切分成一个一个单独的词。分词就是将连续的词序列按照一定的规范重新组合成词序列的过程.

       分词类型,均为按行存储,在YDB中可以进行模糊检索,但是不能在SQL里面进行group by(YSQL函数以外是可以的)。

 

YDB类型

只索引

只存储

Hive类型

解释

simpletext

simpletextyn

simpletextny

string

 ydb内置的普通文本分词 采用1~3元分词

haoma

haomayn

haomany

string

ydb内置的适合号码类型的分词,采用3~5元分词实现,分词粒度为char

chepai

chepaiyn

chepainy

string

ydb内置的适合号码类型的分词,采用2~5元分词实现,分词粒度为char

text

tyn

tny

string

为lucene默认的standard分词,在(处理手机号,邮箱,IP地址,网址等中英文与字典组合的数据上 不准确,请慎用)

cjkyy

cjkyn

cjkny

string

为lucene默认的cjk分词即二元分词 (处理手机号,邮箱,IP地址,网址等中英文与字典组合的数据上 不准确,请慎用)

 

以下类型除了分词外,还保存了分词后的词的顺序 ,可以进行顺序匹配

 

YDB类型

只索引

只存储

Hive类型

解释

charlike

---

---

string

按照字符char 1~5元分词 (效果较好,term区分了词元,适合车牌,手机号类型的较短文本)

wordlike

---

---

string

按字与词 1~3元分词 (效果较好,term区分了词元,适合文本类型)

pchepai

---

---

string

按照字符char 2~5元分词

phaoma

---

---

string

按照字符char 3~5元分词

psimpletext

---

---

string

按字与词 1~3元分词

pyy

pyn

pny

string

lucene的cjk分词,中文采用二元分词,英文与数字采用 单字分词

 

3.多值列类型

有些时候,我们想在一个列里面存储多个值的时候,就可以考虑使用多值列了

比如说,可以将一个人 的多个标签值 存储在一个记录里面,一个人的每天的行为数据 放在一个记录里面。

一定要注意,

1.字符串类型的多值列,返回的值的无序,并且是排重的,故这块有额外注意。

2.数值型的则是有序的(与导入的顺序一致),并且是没有排重的。

3.传递的数值是按照空格拆分的,如 11 22 33 44 

4.如果传递的是空值,会当做null处理

多值列所有数据类型均为按列存储

 

YDB类型

Hive类型

解释

mt_syn

string

 string类型的多值列

mt_tlyn

string

tlong类型的多值列

mt_lyn

string

long类型的多值列

mt_tdyn

string

tdouble类型的多值列

mt_dyn

string

double类型的多值列

mt_iyn

string

int类型的多值列

mt_tiyn

string

tint类型的多值列

mt_fyn

string

float类型的多值列

mt_tfyn

string

tfolat类型的多值列

 

 

 

 

七、创建YDB表

/*ydb.pushdown(‘->‘)*/

create table ydb_example_shu(

phonenum long,

usernick string,

ydb_sex string,

ydb_province string,

ydb_grade string,

ydb_age string,

ydb_blood string,

ydb_zhiye string,

ydb_earn string,

ydb_prefer string,

ydb_consume string,

ydb_day string,

amtdouble tdouble,

amtlong int,

content textcjk

)

/*(‘<-‘)pushdown.ydb*/

 

 

 

八、将HIVE表中的数据导入到YDB中

通过ydbpartion表向YDB中导入数据,下面示例中的ydb_example_shu为YDB表的表名,3000w为YDB表的分区名。

1.直接追加数据

insert into  table ydbpartion

select ‘ydb_example_shu‘, ‘3000w‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_txt;

 

2.覆盖数据

insert overwrite table  ydbpartion

 select ‘ydb_example_shu‘, ‘3000w‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_txt;

 

3.在追加数据前,先执行按条件删除

insert into  table ydbpartion

 select ‘ydb_example_shu‘, ‘3000w‘, ‘ydb_sex=‘男‘  and ydb_blood=‘A‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_txt;

 

 

  

4.HIVE表数据导入优化-控制并发数

#######为什么要控制并发数############

1)启动时候的Map数量不容易控制,如果启动的map数量很多,而Spark又没有容量调度器,会占满所有的资源,影响查询。

2)所以很多时候我们的业务期望,在进行数据导入的时候,不要启动太多的Map数量,而是希望留出一部分资源,能让给查询,于是控制Map数量就显得特别重要了。

3)我们导入数据,倾向于数据能更均衡一些,这样查询的时候,不会因为数据倾斜而影响性能。

4)针对大量小文件,Spark并没有像Hive那样使用了combine inputformat ,合并map查询,这样会导致启动的map数量很多,我们希望依然采用Hive那种能够将一些小的Map进行合并。

 

YDB提供了combine的方法,用来解决上述问题

类名为cn.NET.ycloud.ydb.handle.YdbCombineInputFormat (旧版名字为:cn.Net.ycloud.ydb.handle.Ya100FixNumCombineTextInputFormat)

 

1)####文本形式的示例####

drop table ydb_import_txt;

CREATE external  table ydb_import_txt(

phonenum string, usernick string, ydb_sex string, ydb_province string, ydb_grade string, ydb_age string, ydb_blood string, ydb_zhiye string, ydb_earn string, ydb_prefer string, ydb_consume string, ydb_day string, amtdouble double,amtlong bigint,content string,multyvalue string

)

row format delimited fields terminated by ‘,‘

stored as

    INPUTFORMAT ‘cn.net.ycloud.ydb.handle.YdbCombineInputFormat‘

    OUTPUTFORMAT ‘org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat‘

location ‘/data/example/ydb‘

TBLPROPERTIES (

    ‘ydb.combine.input.format.raw.format‘=‘org.apache.hadoop.mapred.TextInputFormat‘

);

select count(*) from ydb_import_txt limit 10;

 

insert overwrite table  ydbpartion

select ‘ydb_example_shu‘, ‘txt‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_txt;

 

 

/*ydb.pushdown(‘->‘)*/

select count(*) from ydb_example_shu where ydbpartion = ‘txt‘

/*(‘<-‘)pushdown.ydb*/

;

 

 

2)####RCFILE格式示例####

drop table ydb_import_rcfile;

 

CREATE external  table ydb_import_rcfile(

phonenum string, usernick string, ydb_sex string, ydb_province string, ydb_grade string, ydb_age string, ydb_blood string, ydb_zhiye string, ydb_earn string, ydb_prefer string, ydb_consume string, ydb_day string, amtdouble double,amtlong bigint,content string

)

ROW FORMAT SERDE  ‘org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe‘

STORED AS

    INPUTFORMAT    ‘cn.net.ycloud.ydb.handle.YdbCombineInputFormat‘ 

    OUTPUTFORMAT   ‘org.apache.hadoop.hive.ql.io.RCFileOutputFormat‘

TBLPROPERTIES (

    ‘ydb.combine.input.format.raw.format‘=‘org.apache.hadoop.hive.ql.io.RCFileInputFormat‘

);

 

insert overwrite  table ydb_import_rcfile select * from ydb_import_txt;

select count(*) from ydb_import_rcfile limit 10;

 

insert overwrite table  ydbpartion

select ‘ydb_example_shu‘, ‘rcfile‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_rcfile;

 

 

/*ydb.pushdown(‘->‘)*/

select count(*) from ydb_example_shu where ydbpartion = ‘rcfile‘

/*(‘<-‘)pushdown.ydb*/

;

 

 

 

3)####SEQUENCEFILE格式示例####

drop table ydb_import_sequencefile;

 

CREATE external  table ydb_import_sequencefile(

phonenum string, usernick string, ydb_sex string, ydb_province string, ydb_grade string, ydb_age string, ydb_blood string, ydb_zhiye string, ydb_earn string, ydb_prefer string, ydb_consume string, ydb_day string, amtdouble double,amtlong bigint,content string

)

ROW FORMAT SERDE  ‘org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe‘

STORED AS

    INPUTFORMAT    ‘cn.net.ycloud.ydb.handle.YdbCombineInputFormat‘ 

    OUTPUTFORMAT   ‘org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat‘

TBLPROPERTIES (

    ‘ydb.combine.input.format.raw.format‘=‘org.apache.hadoop.mapred.SequenceFileInputFormat‘

);

 

SET hive.exec.compress.output=true;

SET mapred.output.compression.codec=org.apache.hadoop.io.compress.DefaultCodec;

SET mapred.output.compression.type=BLOCK;

insert overwrite  table ydb_import_sequencefile select * from ydb_import_txt;

select count(*) from ydb_import_sequencefile limit 10;

 

insert overwrite table  ydbpartion

select ‘ydb_example_shu‘, ‘sequencefile‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_sequencefile;

 

 

/*ydb.pushdown(‘->‘)*/

select count(*) from ydb_example_shu where ydbpartion = ‘sequencefile‘

/*(‘<-‘)pushdown.ydb*/

 

4)####PARQUET格式示例####

###Spark内部对SERDE含有Parquet格式的类名进行了特殊处理,会导致设置的inputformat不生效,所以YDB也特殊处理下,就换成不含有Parquet的名字

drop table ydb_import_parquet;

CREATE external  table ydb_import_parquet(

phonenum string, usernick string, ydb_sex string, ydb_province string, ydb_grade string, ydb_age string, ydb_blood string, ydb_zhiye string, ydb_earn string, ydb_prefer string, ydb_consume string, ydb_day string, amtdouble double,amtlong bigint,content string

)

ROW FORMAT SERDE  ‘cn.net.ycloud.ydb.handle.combine.YdbParHiveSerDe‘

STORED AS

    INPUTFORMAT    ‘cn.net.ycloud.ydb.handle.YdbCombineInputFormat‘ 

    OUTPUTFORMAT   ‘cn.net.ycloud.ydb.handle.combine.YdbParMapredParquetOutputFormat‘

TBLPROPERTIES (

    ‘ydb.combine.input.format.raw.format‘=‘org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat‘

);

 

set parquet.block.size=16777216;

insert overwrite  table ydb_import_parquet select * from ydb_import_txt;

select count(*) from ydb_import_parquet limit 10;

insert overwrite table  ydbpartion

select ‘ydb_example_shu‘, ‘parquet‘, ‘‘,

    YROW(

        ‘phonenum‘,phonenum,

        ‘usernick‘,usernick,

        ‘ydb_sex‘,ydb_sex,

        ‘ydb_province‘,ydb_province,

        ‘ydb_grade‘,ydb_grade,

        ‘ydb_age‘,ydb_age,

        ‘ydb_blood‘,ydb_blood,

        ‘ydb_zhiye‘,ydb_zhiye,

        ‘ydb_earn‘,ydb_earn,

        ‘ydb_prefer‘,ydb_prefer,

        ‘ydb_consume‘,ydb_consume,

        ‘ydb_day‘,ydb_day,

        ‘amtdouble‘,amtdouble,

        ‘amtlong‘,amtlong,

        ‘content‘,content

    )

from ydb_import_parquet;

 

/*ydb.pushdown(‘->‘)*/

select count(*) from ydb_example_shu where ydbpartion = ‘parquet‘

/*(‘<-‘)pushdown.ydb*/

 

 

 

九、YDB 查询SQL 写法

注意YDB的表强制必须指定分区

为了区分YDB表与Hive表,YDB语句需要使用

/*ydb.pushdown(‘->‘)*/ 与 /*(‘<-‘)pushdown.ydb*/ 前后包含起来,以方便解析

1.基本示例

----count(*)计数

/*ydb.pushdown(‘->‘)*/

select count(*) from ydb_example_shu where ydbpartion = ‘2015‘

/*(‘<-‘)pushdown.ydb*/ ;

 

----数据预览

/*ydb.pushdown(‘->‘)*/

select * from ydb_example_shu where ydbpartion = ‘3000w‘ limit 10

/*(‘<-‘)pushdown.ydb*/;

 

----全文检索

/*ydb.pushdown(‘->‘)*/

select content,usernick from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘王老吉‘ limit 10

/*(‘<-‘)pushdown.ydb*/;

 

----多个条件组合过滤

/*ydb.pushdown(‘->‘)*/

select ydb_sex,ydb_grade,ydb_age,ydb_blood,amtlong from ydb_example_shu where ydbpartion = ‘3000w‘ and ydb_sex=‘女‘ and ydb_grade=‘本科‘ and (ydb_age=‘20到30岁‘ or ydb_blood=‘O‘) and  (amtlong like ‘([3000 TO 4000] )‘) limit 10

/*(‘<-‘)pushdown.ydb*/;

 

----sum求和

/*ydb.pushdown(‘->‘)*/

select sum(amtdouble) from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-‘)pushdown.ydb*/;

 

----avg求平均数

/*ydb.pushdown(‘->‘)*/

select avg(amtdouble) as avgamt from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-‘)pushdown.ydb*/;

 

----更复杂点的统计

/*ydb.pushdown(‘->‘)*/

select count(*),count(amtdouble),avg(amtdouble),sum(amtdouble),min(amtdouble),max(amtdouble)

,min(ydb_province),max(ydb_province) from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-’)pushdown.ydb*/;

 

----单列group by

/*ydb.pushdown(‘->‘)*/

select ydb_sex,count(*),count(amtdouble),sum(amtdouble) from ydb_example_shu where ydbpartion = ‘3000w‘ group by ydb_sex limit 10

/*(‘<-‘)pushdown.ydb*/;

 

----多列group by

/*ydb.pushdown(‘->‘)*/

select ydb_sex,ydb_province,count(*) as cnt,count(amtdouble),sum(amtdouble) from ydb_example_shu where ydbpartion = ‘3000w‘ group by ydb_sex,ydb_province order by cnt desc limit 10

/*(‘<-‘)pushdown.ydb*/;

 

----top N 排序

/*ydb.pushdown(‘->‘)*/

select ydb_sex, phonenum,amtlong,amtdouble

 from ydb_example_shu where ydbpartion=‘3000w‘  order by amtdouble desc ,amtlong limit 10

/*(‘<-‘)pushdown.ydb*/;

 

2.YDB特有的BlockSort排序(排序大跃进)

   按照时间逆序排序可以说是很多日志系统的硬指标。在延云YDB系统中,我们改变了传统的暴力排序方式,通过索引技术,可以超快对数据进行单列排序,不需要全表暴力扫描,这个技术我们称之为BlockSort,目前支持tlong、tdouble、tint、tfloat四种数据类型。

   由于BlockSort是借助搜索的索引来实现的,所以采用blockSort的排序,不需要暴力扫描,性能有大幅度的提升。

   BlockSort的排序,并非是预计算的方式,可以全表进行排序,也可以基于任意的过滤筛选条件进行过滤排序。

 

 

正常写法

blockSort写法

单列升序

/*ydb.pushdown(‘->‘)*/

select tradetime, nickname from blocksort_ydb

 order by tradetime limit 10

/*(‘<-‘)pushdown.ydb*/;

 

/*ydb.pushdown(‘->‘)*/

select tradetime, nickname from blocksort_ydb where

    ydbkv=‘blocksort.field:tradetime‘ and 
    ydbkv=‘blocksort.desc:false‘ and

    ydbkv=‘blocksort.limit:10‘

     order by tradetime limit 10

/*(‘<-‘)pushdown.ydb*/;

单列降序

/*ydb.pushdown(‘->‘)*/

select tradetime, nickname from blocksort_ydb

 order by tradetime desc limit 10

/*(‘<-‘)pushdown.ydb*/;

/*ydb.pushdown(‘->‘)*/

select tradetime, nickname from blocksort_ydb where

    ydbkv=‘blocksort.field:tradetime‘ and

    ydbkv=‘blocksort.limit:10‘ and

    ydbkv=‘blocksort.desc:true‘

     order by tradetime desc limit 10

/*(‘<-‘)pushdown.ydb*/;

3.数据导出

 

----导出数据到hive表

insert overwrite table ydb_import_importtest

/*ydb.pushdown(‘->‘)*/

select  phonenum,usernick,ydb_sex,ydb_province,

ydb_grade,ydb_age,ydb_blood,ydb_zhiye,ydb_earn,

ydb_prefer,ydb_consume,ydb_day,amtdouble,amtlong,content

from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-‘)pushdown.ydb*/;

 

#有limit的导出示例 (在Spark的当前版本有BUG,需要采用如下变通方法解决)

insert overwrite table ydb_import_importtest

select * from (

/*ydb.pushdown(‘->‘)*/

    select 

     phonenum,usernick,ydb_sex,ydb_province,ydb_grade,ydb_age,ydb_blood,ydb_zhiye,ydb_earn,ydb_prefer,ydb_consume,ydb_day,amtdouble,amtlong,content 

from ydb_example_shu where ydbpartion = ‘3000w‘ and ydbkv=‘export.max.return.docset.size:1000‘ 

/*(‘<-‘)pushdown.ydb*/

   

) tmp  order by rand() limit 1000;

 

----数据导出到YDB的其他分区里示例

insert overwrite table ydbpartion

select ‘ydb_example_shu‘, ‘test3‘, ‘‘,

    YROW(

        ‘phonenum‘,tmp.phonenum,

        ‘usernick‘,tmp.usernick,

        ‘ydb_sex‘,tmp.ydb_sex,

        ‘ydb_province‘,tmp.ydb_province,

        ‘ydb_grade‘,tmp.ydb_grade,

        ‘ydb_age‘,tmp.ydb_age,

        ‘ydb_blood‘,tmp.ydb_blood,

        ‘ydb_zhiye‘,tmp.ydb_zhiye,

        ‘ydb_earn‘,tmp.ydb_earn,

        ‘ydb_prefer‘,tmp.ydb_prefer,

        ‘ydb_consume‘,tmp.ydb_consume,

        ‘ydb_day‘,tmp.ydb_day,

        ‘amtdouble‘,tmp.amtdouble,

        ‘amtlong‘,tmp.amtlong,

        ‘content‘,tmp.content

    )

from (

/*ydb.pushdown(‘->‘)*/

select

    phonenum,usernick,ydb_sex,ydb_province,ydb_grade,ydb_age,ydb_blood,ydb_zhiye,ydb_earn,ydb_prefer,ydb_consume,ydb_day,amtdouble,amtlong,content 

from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-‘)pushdown.ydb*/

) tmp

;

 

----导出数据到HDFS

 

由于Spark当前版本无法通过insert Directory的方式直接导出数据到HDFS,但是可以将数据导出到Hive表,故数据导出到HDFS可以通过导出到Hive表变通的方式来解决

 

可以通过创建一个导出表来解决

 CREATE external  table ydb_import_importtest(

    phonenum bigint, usernick string, ydb_sex string, ydb_province string, ydb_grade string, ydb_age string, ydb_blood string, ydb_zhiye string, ydb_earn string, ydb_prefer string, ydb_consume string, ydb_day string, amtdouble double,amtlong int,content string

)location ‘/data/example/ydb_import_importtest‘;

 

 

如果我们创建表的时候,没有加location,我们可以通过show create table xxx表名 可以看到location的位置

 

 

4.多表关联示例

 

1)---两个卡口left semi join

  select  k1.vehiclePlate as vehiclePlate from (

           /*ydb.pushdown(‘->‘)*/

          select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘    

          /*(‘<-‘)pushdown.ydb*/

    ) k1

    LEFT SEMI JOIN

   (

       /*ydb.pushdown(‘->‘)*/

       select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘2‘   

       /*(‘<-‘)pushdown.ydb*/

    ) k2

    on (k1.vehiclePlate=k2.vehiclePlate);

 

+---------------+--+

| vehiclePlate  |

+---------------+--+

| c22           |

| c23           |

| c33           |

| c34           |

+---------------+--+

 

2)---两个卡口left join

  select  k1.vehiclePlate as vehiclePlate,k2.vehiclePlate from (

       /*ydb.pushdown(‘->‘)*/

       select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘

       /*(‘<-‘)pushdown.ydb*/

) k1

LEFT JOIN

 (

    /*ydb.pushdown(‘->‘)*/

    select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘

    /*(‘<-‘)pushdown.ydb*/

) k2

on (k1.vehiclePlate=k2.vehiclePlate);

 

+---------------+---------------+--+

| vehiclePlate  | vehiclePlate  |

+---------------+---------------+--+

| c11           | NULL          |

| c22           | c22           |

| c23           | c23           |

| c33           | c33           |

| c34           | c34           |

+---------------+---------------+--+

 

 

3)---三个卡口left semi join

select k21.vehiclePlate from(

    select  k1.vehiclePlate as vehiclePlate from (

            /*ydb.pushdown(‘->‘)*/

             select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘

           /*(‘<-‘)pushdown.ydb*/

    ) k1

    LEFT SEMI JOIN

   (

       /*ydb.pushdown(‘->‘)*/

       select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘2‘

      /*(‘<-‘)pushdown.ydb*/ 

    ) k2

    on (k1.vehiclePlate=k2.vehiclePlate)

 ) k21

LEFT SEMI JOIN

(

   /*ydb.pushdown(‘->‘)*/

   select vehiclePlate,tollCode from vehiclepass  where ydbpartion = ‘3000w‘ and tollCode=‘3‘ 

  /*(‘<-‘)pushdown.ydb*/

 ) k22 on k21.vehiclePlate=k22.vehiclePlate order by k21.vehiclePlate;

 

+---------------+--+

| vehiclePlate  |

+---------------+--+

| c33           |

| c34           |

+---------------+--+

 

 

 

4)---三个卡口left join

select k21.vehiclePlate,k22.vehiclePlate from(

    select  k1.vehiclePlate as vehiclePlate from (

            /*ydb.pushdown(‘->‘)*/

            select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘ 

           /*(‘<-‘)pushdown.ydb*/

    ) k1

    LEFT JOIN

   (

         /*ydb.pushdown(‘->‘)*/

         select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘2‘

         /*(‘<-‘)pushdown.ydb*/

    ) k2

    on (k1.vehiclePlate=k2.vehiclePlate)

 ) k21

LEFT JOIN

(

     /*ydb.pushdown(‘->‘)*/

    select vehiclePlate,tollCode from vehiclepass  where ydbpartion = ‘3000w‘ and tollCode=‘3‘ 

    /*(‘<-‘)pushdown.ydb*/

 ) k22 on k21.vehiclePlate=k22.vehiclePlate ;

 +---------------+---------------+--+

| vehiclePlate  | vehiclePlate  |

+---------------+---------------+--+

| c11           | NULL          |

| c22           | NULL          |

| c23           | NULL          |

| c33           | c33           |

| c34           | c34           |

+---------------+---------------+--+

 

 

5)----三个卡口 先left SEMI join 之后再 left join

 

select k21.vehiclePlate,k22.vehiclePlate from(

    select  k1.vehiclePlate as vehiclePlate from (

           /*ydb.pushdown(‘->‘)*/

           select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘1‘

           /*(‘<-‘)pushdown.ydb*/

    ) k1

    LEFT SEMI JOIN

   (

        /*ydb.pushdown(‘->‘)*/

       select vehiclePlate,tollCode from vehiclepass where ydbpartion = ‘3000w‘ and tollCode=‘2‘ 

       /*(‘<-‘)pushdown.ydb*/

    ) k2

    on (k1.vehiclePlate=k2.vehiclePlate)

 ) k21

LEFT JOIN

(

    /*ydb.pushdown(‘->‘)*/

    select vehiclePlate,tollCode from vehiclepass  where ydbpartion = ‘3000w‘ and tollCode=‘3‘ 

    /*(‘<-‘)pushdown.ydb*/

 ) k22 on k21.vehiclePlate=k22.vehiclePlate ;

 

 

 +---------------+---------------+--+

| vehiclePlate  | vehiclePlate  |

+---------------+---------------+--+

| c22           | NULL          |

| c23           | NULL          |

| c33           | c33           |

| c34           | c34           |

+---------------+---------------+--+

 

 

5.UNION示例

 

1)--union--统计的结果

 

select sum(cnt) as cnt from

(

 

/*ydb.pushdown(‘->‘)*/

 select count(*) as cnt from ydb_example_shu where ydbpartion = ‘3000w‘

/*(‘<-‘)pushdown.ydb*/

 

union all

/*ydb.pushdown(‘->‘)*/

select count(*) as cnt from ydb_example_shu where ydbpartion = ‘300winsert‘

/*(‘<-‘)pushdown.ydb*/

 

union all

/*ydb.pushdown(‘->‘)*/

select count(*) as cnt from ydb_example_shu where ydbpartion = ‘300winsert2‘

/*(‘<-‘)pushdown.ydb*/

 

union all

/*ydb.pushdown(‘->‘)*/

select count(*) as cnt from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘王老吉‘ 

/*(‘<-‘)pushdown.ydb*/

 

union all

/*ydb.pushdown(‘->‘)*/

select count(*) as cnt from ydb_example_shu where ydbpartion = ‘20151011‘ and content=‘工商银行‘

/*(‘<-‘)pushdown.ydb*/

 

union all

/*ydb.pushdown(‘->‘)*/

 select count(*) as cnt from ydb_example_shu where ydbpartion = ‘20151011‘ 

/*(‘<-‘)pushdown.ydb*/

 

) tmp limit 10;

 

 

2)--union order by的结果,注意,这里有个子查询SQL

select * from

(

/*ydb.pushdown(‘->‘)*/ s

elect amtlong,content from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘旺旺‘ order by amtlong desc limit 1

/*(‘<-‘)pushdown.ydb*/

union all

/*ydb.pushdown(‘->‘)*/

select amtlong,content from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘王老吉‘ order by amtlong desc limit 1 

/*(‘<-‘)pushdown.ydb*/

union all

/*ydb.pushdown(‘->‘)*/

select amtlong,content from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘汇源‘ order by amtlong desc limit 1  

/*(‘<-‘)pushdown.ydb*/

union all

/*ydb.pushdown(‘->‘)*/

select amtlong,content from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘哇哈哈‘ order by amtlong desc limit 1 

/*(‘<-‘)pushdown.ydb*/ 

 

) tmp  limit 1000;

 

3)YDB表的多个分区一起查询,通过IN来实现

 

/*ydb.pushdown(‘->‘)*/

select count(*),count(amtdouble),sum(amtdouble),avg(amtdouble),min(amtdouble),max(amtdouble),min(ydb_province),max(ydb_province) from ydb_example_shu where   ydbpartion in (  ‘3000w0‘,‘3000w1‘ ,‘3000w2‘,‘3000w3‘,‘3000w4‘,‘3000w5‘,‘3000w6‘,‘3000w7‘,‘3000w8‘,‘3000w9‘,‘3000w10‘ ,‘3000w11‘,‘3000w12‘,‘3000w13‘,‘3000w14‘,‘3000w15‘ ,‘3000w16‘  ,‘3000w17‘,‘3000w18‘,‘3000w19‘

,‘3000a0‘,‘3000a1‘ ,‘3000a2‘,‘3000a3‘,‘3000a4‘,‘3000a5‘,‘3000a6‘,‘3000a7‘,‘3000a8‘,‘3000a9‘,‘3000a10‘ ,‘3000a11‘,‘3000a12‘,‘3000a13‘,‘3000a14‘,‘3000a15‘ ,‘3000a16‘  ,‘3000a17‘,‘3000a18‘,‘3000a19‘

,‘3000b0‘,‘3000b1‘ ,‘3000b2‘,‘3000b3‘,‘3000b4‘,‘3000b5‘,‘3000b6‘,‘3000b7‘,‘3000b8‘,‘3000b9‘,‘3000b10‘ ,‘3000b11‘,‘3000b12‘,‘3000b13‘,‘3000b14‘,‘3000b15‘ ,‘3000b16‘  ,‘3000b17‘,‘3000b18‘,‘3000b19‘

)

/*(‘<-‘)pushdown.ydb*/

;

 

6.DISTINCT示例

-----#####如果distinct的数据并不多,可以考虑采用collect_set 性能较好#######

 

1)----####直接count distinct##########

select

    size(collect_set(tmp.ydb_sex)) as dist_sex,

    size(collect_set(tmp.ydb_province)) as dist_province,

    count(*) as cnt,

    count(tmp.amtlong) as cnt_long,

    count(distinct tmp.amtlong) as dist_long

from (

    /*ydb.pushdown(‘->‘)*/

        select ydb_sex,ydb_province,amtlong from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘王老吉‘

    /*(‘<-‘)pushdown.ydb*/

) tmp limit 10;

 

 

2)----group by 加 count distinct####

select

    tmp.ydb_sex as ydb_sex,

    size(collect_set(tmp.ydb_province)) as dist_province,

    count(*) as cnt,

    count(tmp.amtlong) as cnt_long,

    count(distinct tmp.amtlong) as dist_long

from

(

    /*ydb.pushdown(‘->‘)*/

        select ydb_sex,ydb_province,amtlong from ydb_example_shu where ydbpartion = ‘3000w‘ and content=‘王老吉‘

    /*(‘<-‘)pushdown.ydb*/

) tmp

group by tmp.ydb_sex limit 10;

 

7.行转列示例

 

select ydb_sex,concat_ws(‘#‘, sort_array(collect_set(concat_ws(‘,‘,ydb_province,cnt,cntamt,sumamt)))) from (

    /*ydb.pushdown(‘->‘)*/

        select ydb_sex,ydb_province,count(*) as cnt,count(amtdouble) as cntamt,sum(amtdouble) as sumamt from ydb_example_shu where ydbpartion = ‘3000w‘ group by ydb_sex,ydb_province 

    /*(‘<-‘)pushdown.ydb*/

)tmp  group by ydb_sex limit 10;

 

技术分享

 

select ydb_province,sum(cnt) as scnt,concat_ws(‘#‘, sort_array(collect_s

人气教程排行