当前位置:Gxlcms > 数据库问题 > PostgreSQL 使用 PreparedStatement 导致查询慢的分析

PostgreSQL 使用 PreparedStatement 导致查询慢的分析

时间:2021-07-01 10:21:17 帮助过:27人阅读

static void test1(String url, Properties props){ String sql = "SELECT l.src_ip, l.location_id, " + "SUM(l.us_bytes) as up_usage, " + "SUM(l.ds_bytes) as down_usage, " + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage " + "FROM unmapped_endpoint_location_hours l " + "where l.org_id = 195078 " + "AND date_time >= ‘2017-04-01 00:00:00.0‘ AND date_time < ‘2017-04-08 00:00:00.0‘ " + "AND l.location_id in (2638,2640,2654 ) " + "GROUP BY l.src_ip, l.location_id "; Connection conn = null; Statement sta = null; try { System.out.println("Start query1:" ); long s_time = System.currentTimeMillis(); conn = DriverManager.getConnection(url, props); sta = conn.createStatement(); sta.execute(sql); System.out.println("Using Time: " + (System.currentTimeMillis() - s_time)); } catch (SQLException e) { e.printStackTrace(); } finally { if (conn != null) { try { conn.close(); } catch (SQLException e) { e.printStackTrace(); } } if (sta != null) { try { sta.close(); } catch (SQLException e) { e.printStackTrace(); } } } }

结果:

Start query1:
Using Time: 11519 ms

测试二

使用JDBC PreparedStatement 查询相同的SQL:

public static void test2(String url, Properties props){
        String sql2 = "SELECT l.src_ip, l.location_id, "
                + "SUM(l.us_bytes) as up_usage, "
                + "SUM(l.ds_bytes) as down_usage, "
                + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                + "FROM unmapped_endpoint_location_hours l "
                + "where l.org_id = ? "
                + "AND date_time >= ? AND date_time < ? "
                + "AND l.location_id in (2638,2640,2654 ) "
                + "GROUP BY l.src_ip, l.location_id";
        
        Connection conn = null;
        PreparedStatement preSta = null;
        try {
            System.out.println("Start query2:");
            long s_time = System.currentTimeMillis();
            conn = DriverManager.getConnection(url, props);
            preSta = conn.prepareStatement(sql2);
            preSta.setString(1, "195078");
            preSta.setString(2, "2017-04-01 00:00:00.0");
            preSta.setString(3, "2017-04-09 00:00:00.0");
            preSta.executeQuery();
            System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                try {
                    conn.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            if (preSta != null) {
                try {
                    preSta.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }

结果:

Start query2:
Using Time: 143031 ms

相同的SQL,测试二和测试一结果为什么差别这么大?

测试一的SQL没有使用PreparedStatement 方式,直接给了原始的SQL。测试二的使用了PreparedStatement ,但是在set参数的时候用的都是String。

两者查询速度相差10倍,这是不是很奇怪?

现在来做另一个实验:

测试三

使用JDBC PreparedStatement 查询相同的SQL:

public static void test3(String url, Properties props){
        String sql2 = "SELECT l.src_ip, l.location_id, "
                + "SUM(l.us_bytes) as up_usage, "
                + "SUM(l.ds_bytes) as down_usage, "
                + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                + "FROM unmapped_endpoint_location_hours l "
                + "where l.org_id = ? "
                + "AND date_time >= ? AND date_time < ? "
                + "AND l.location_id in (2638,2640,2654 ) "
                + "GROUP BY l.src_ip, l.location_id";
        
        Connection conn = null;
        PreparedStatement preSta = null;
        try {
            System.out.println("Start query3:");
            long s_time = System.currentTimeMillis();
            conn = DriverManager.getConnection(url, props);
            preSta = conn.prepareStatement(sql2);
            
            int org_id = 195078;
            SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            TimeZone.setDefault(TimeZone.getTimeZone("UTC"));
            Date d1 = null;
            Date d2 = null;
            try {
                d1 = df.parse("2017-04-01 00:00:00");
                d2 = df.parse("2017-04-09 00:00:00");
            } catch (ParseException e1) {
                e1.printStackTrace();
            }
            preSta.setInt(1, org_id);
            preSta.setTimestamp(2, new java.sql.Timestamp(d1.getTime()));
            preSta.setTimestamp(3, new java.sql.Timestamp(d2.getTime()));
            preSta.executeQuery();
            System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                try {
                    conn.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            if (preSta != null) {
                try {
                    preSta.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }

结果:

Start query3:
Using Time: 16245 ms

测试结果和测试一的结果差不多,为什么?

这次测试同样使用了PreparedStatement,但是在设置参数的时候指定了参数的类型。

explan analyze

查看explan

dev=# explain analyze SELECT count(loc.name) AS totalNum
dev-# FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
dev(#       FROM (SELECT l.src_ip, l.location_id,
dev(#                   SUM(l.us_bytes) as up_usage,
dev(#                   SUM(l.ds_bytes) as down_usage,
dev(#                   (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
dev(#             FROM unmapped_endpoint_location_hours l
dev(#             where l.org_id = 195078
dev(#                   AND date_time >= ‘2017-04-11 00:00:00.0‘ AND date_time < ‘2017-04-20 00:00:00.0‘
dev(#                   AND l.location_id in (2638,2640)
dev(#                   GROUP BY l.src_ip, l.location_id ) t
dev(# WHERE t.total_usage > 0.0 ) m
dev-# LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = 195078;

Time: 15202.518 ms

Prepare Expalin:

PREPARE  test(int,text,text,int) as
SELECT count(loc.name) AS totalNum
FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
      FROM (SELECT l.src_ip, l.location_id,
                  SUM(l.us_bytes) as up_usage,
                  SUM(l.ds_bytes) as down_usage,
                  (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
            FROM unmapped_endpoint_location_hours l
            where l.org_id = $1
                  AND date_time >= $2 AND date_time < $3
                  AND l.location_id in (2638,2640)
                  GROUP BY l.src_ip, l.location_id ) t
WHERE t.total_usage > 0.0 ) m
LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = $4;

Explain analyze EXECUTE test(195078,‘2017-04-11 00:00:00.0‘,‘2017-04-20 00:00:00.0‘,195078);
dev=# EXECUTE test(195078,‘2017-04-11 00:00:00.0‘,‘2017-04-20 00:00:00.0‘,195078);

Time: 98794.544 ms

 

结论

PostgreSQL 在使用原始SQL的时候会用表中类型来查,能有效根据where条件过滤结果。

当参数都是使用String的时候,没有指定类型时,PostgreSQL没有先做类型转换,而是扫描了所有的数据,对所有的数据根据where条件过滤结果。

当查询参数指定类型的时候,PostgreSQL可以先根据where条件过滤结果。

 

相关连接:

It seems when using JDBC with prepare statement, the query will be slow in postgresql:

http://www.postgresql-archive.org/Slow-statement-when-using-JDBC-td3368379.html

http://grokbase.com/t/postgresql/pgsql-general/116t4ewawk/reusing-cached-prepared-statement-slow-after-5-executions

https://stackoverflow.com/questions/28236827/preparedstatement-very-slow-but-manual-query-quick

 

PostgreSQL 使用 PreparedStatement 导致查询慢的分析

标签:timezone   ack   exec   null   tin   overflow   public   text   rom   

人气教程排行