当前位置:Gxlcms > 数据库问题 > LINUX下GDB反汇编和调试

LINUX下GDB反汇编和调试

时间:2021-07-01 10:21:17 帮助过:49人阅读

+-------------------------+----> 高地址
    | EIP (上级函数返回地址)    | 
    +-------------------------+ 
 +-->   | EBP (上级函数的EBP)      | --+ <------当前函数A的EBP (即SFP框架指针) 
 | +-------------------------+   +-->偏移量A 
 | | Local Variables         |   |
 | | ..........              | --+  <------ESP指向函数A新分配的局部变量,局部变量能够通过A的ebp-偏移量A訪问 
 | f +-------------------------+
 | r | Arg n(函数B的第n个參数)   | 
 | a +-------------------------+
 | m | Arg .(函数B的第.个參数)   |
 | e +-------------------------+
 | | Arg 1(函数B的第1个參数)   |
 | o +-------------------------+
 | f | Arg 0(函数B的第0个參数)   | --+ <------ B函数的參数能够由B的ebp+偏移量B訪问
 | +-------------------------+   +--> 偏移量B
 | A | EIP (A函数的返回地址)     |   | 
 | +-------------------------+ --+ 
 +--- | EBP (A函数的EBP)         |<--+ <------ 当前函数B的EBP (即SFP框架指针) 
    +-------------------------+   |
    | Local Variables         |   |
    | ..........              |   | <------ ESP指向函数B新分配的局部变量
    +-------------------------+   |
    | Arg n(函数C的第n个參数)   |   |
    +-------------------------+   |
    | Arg .(函数C的第.个參数)   |   |
    +-------------------------+   +--> frame of B
    | Arg 1(函数C的第1个參数)   |   |
    +-------------------------+   |
    | Arg 0(函数C的第0个參数)   |   |
    +-------------------------+   |
    | EIP (B函数的返回地址)     |   |
    +-------------------------+   |
 +-->   | EBP (B函数的EBP)         | --+ <------ 当前函数C的EBP (即SFP框架指针) 
 |      +-------------------------+
 | | Local Variables         |
 | | ..........              | <------ ESP指向函数C新分配的局部变量
 | +-------------------------+----> 低地址
frame of C

图 1-1 
       
    再分析test1反汇编结果中剩余部分语句的含义:
        
    # mdb test1
    Loading modules: [ libc.so.1 ]
    > main::dis                        ; 反汇编main函数
    main:          pushl   %ebp                            
    main+1:        movl    %esp,%ebp        ; 创建Stack Frame(栈框架)
    main+3:       subl    $8,%esp       ; 通过ESP-8来分配8字节堆栈空间
    main+6:       andl    $0xf0,%esp    ; 使栈地址16字节对齐
    main+9:       movl    $0,%eax       ; 无意义
    main+0xe:     subl    %eax,%esp     ; 无意义
    main+0x10:     movl    $0,%eax          ; 设置main函数返回值
    main+0x15:     leave                    ; 撤销Stack Frame(栈框架)
    main+0x16:     ret                      ; main 函数返回
    >


    下面两句似乎是没有意义的,果真是这样吗?
        movl    $0,%eax 
        subl     %eax,%esp
       
    用gcc的O2级优化来又一次编译test1.c:
    # gcc -O2 test1.c -o test1
    # mdb test1
    > main::dis
    main:         pushl   %ebp
    main+1:       movl    %esp,%ebp
    main+3:       subl    $8,%esp
    main+6:       andl    $0xf0,%esp
    main+9:       xorl    %eax,%eax      ; 设置main返回值,使用xorl异或指令来使eax为0
    main+0xb:     leave
    main+0xc:     ret
    > 
    新的反汇编结果比最初的结果要简洁一些。果然之前被觉得没用的语句被优化掉了,进一步验证了之前的推測。
    提示:编译器产生的某些语句可能在程序实际语义上没实用处。能够用优化选项去掉这些语句。




    问题:为什么用xorl来设置eax的值?
    注意到优化后的代码中,eax返回值的设置由 movl $0,%eax 变为 xorl %eax,%eax ,这是由于IA32指令中,xorl比movl有更高的执行速度。


    概念:Stack aligned 栈对齐
    那么,下面语句究竟是和作用呢?
        subl    $8,%esp
       andl    $0xf0,%esp     ; 通过andl使低4位为0,保证栈地址16字节对齐
       
    表面来看,这条语句最直接的后果是使ESP的地址后4位为0,即16字节对齐,那么为什么这么做呢?
    原来,IA32 系列CPU的一些指令分别在4、8、16字节对齐时会有更快的执行速度,因此gcc编译器为提高生成代码在IA32上的执行速度。默认对产生的代码进行16字节对齐


        andl $0xf0,%esp 的意义非常明显,那么 subl $8,%esp 呢,是必须的吗?
    这里如果在进入main函数之前。栈是16字节对齐的话,那么,进入main函数后,EIP和EBP被压入堆栈后,栈地址最末4位二进制位必然是1000,esp -8则恰好使后4位地址二进制位为0000。看来,这也是为保证栈16字节对齐的。


    假设查一下gcc的手冊,就会发现关于栈对齐的參数设置:
    -mpreferred-stack-boundary=n    ; 希望栈依照2的n次的字节边界对齐, n的取值范围是2-12


    默认情况下,n是等于4的。也就是说。默认情况下,gcc是16字节对齐,以适应IA32大多数指令的要求。


    让我们利用-mpreferred-stack-boundary=2来去除栈对齐指令:
      
    # gcc -mpreferred-stack-boundary=2 test1.c -o test1
       
    > main::dis
    main:       pushl   %ebp
    main+1:     movl    %esp,%ebp
    main+3:     movl    $0,%eax
    main+8:     leave
    main+9:     ret
    > 


    能够看到。栈对齐指令没有了。由于。IA32的栈本身就是4字节对齐的,不须要用额外指令进行对齐。
    那么,栈框架指针SFP是不是必须的呢?
    # gcc -mpreferred-stack-boundary=2 -fomit-frame-pointer test1.c -o test
    > main::dis
    main:       movl    $0,%eax
    main+5:     ret
    > 


    由此可知,-fomit-frame-pointer 能够去除SFP。


       
    问题:去除SFP后有什么缺点呢?
       
    1)添加调式难度
        因为SFP在调试器backtrace的指令中被使用到。因此没有SFP该调试指令就无法使用。
    2)减少汇编代码可读性
        函数參数和局部变量的訪问,在没有ebp的情况下,都仅仅能通过+xx(esp)的方式訪问,而非常难区分两种方式,减少了程序的可读性。
       
    问题:去除SFP有什么长处呢?
       
    1)节省栈空间
    2)降低建立和撤销栈框架的指令后,简化了代码
    3)使ebp空暇出来,使之作为通用寄存器使用,添加通用寄存器的数量
    4)以上3点使得程序执行速度更快


    概念:Calling Convention  调用约定和 ABI (Application Binary Interface) 应用程序二进制接口
         
        函数怎样找到它的參数?
        函数怎样返回结果?
        函数在哪里存放局部变量?
        那一个硬件寄存器是起始空间?
        那一个硬件寄存器必须预先保留?


    Calling Convention  调用约定对以上问题作出了规定。Calling Convention也是ABI的一部分。


    因此,遵守同样ABI规范的操作系统。使其相互间实现二进制代码的互操作成为了可能。
    比如:因为Solaris、Linux都遵守System V的ABI。Solaris 10就提供了直接执行Linux二进制程序的功能。
    详见文章:关注: Solaris 10的10大新变化 
             
3. 小结
    本文通过最简的C程序。引入下面概念:
        SFP 栈框架指针
        Stack aligned 栈对齐
        Calling Convention  调用约定 和 ABI (Application Binary Interface) 应用程序二进制接口
    今后。将通过进一步的实验,来深入了解这些概念。通过掌握这些概念,使在汇编级调试程序产生的core dump、掌握C语言高级调试技巧成为了可能。

LINUX下GDB反汇编和调试

标签:content   寄存器   平台   pop   start   linux   现象   dump   app   

人气教程排行