当前位置:Gxlcms > 数据库问题 > Java面试05|MySQL及InnoDB引擎

Java面试05|MySQL及InnoDB引擎

时间:2021-07-01 10:21:17 帮助过:18人阅读

D、一个表不要加太多索引,因为索引影响插入和更新的速度,因为 insert 或 update 时有可能会重建索引

 

(2)表数据字段的冗余(反范式) 

(3)表的设计 垂直与水平分表,垂直分库与水平分库

表的垂直拆分 

可以参阅文章:一分钟掌握数据库垂直拆分  http://mp.weixin.qq.com/s/ezD0CWHAr0RteC9yrwqyZA

随着需求越来越多,某一张表的列越来越增加,为了控制表的宽度可以进行表的垂直拆分。 将表进行垂直拆分: 

技术分享

原因:数据库以页存储,表越宽,每一行的数据越大,一页中所能存储的行数就会越来越少。拆分成多张窄表,每一张表中所含长度不会大,优化了IO效率。 
原则:

    - 经常一起查询的列放到一张小表中,减少表关联     - text,blob等大字段拆分出到附加表中   表的水平拆分

原来一张大表有上亿数据,需要减少表中的数据量,为了控制表的大小可以进行表的水平拆分。 将表进行水平拆分:

 技术分享

那么如何把一张大表中的数据,分配到多张小表中呢?拆分可以按照Hash方式,如下图: 

技术分享

每一张表都拥有一个主键值,通过对主键值进行哈希操作,比如说主键按摩取值,把一张大表平均分配到几张小表中,解决了表中数据量的问题。

 

 

3、MySQL常用函数

convert()

cast()

truncate() 截断小数

round() 四舍五入

lower()/upper() 把参数变为大小写

length() 求参数的长度

concat(参数1,参数2): 把参数1和参数2连接起来

floor(参数):返回小于或等于参数的最大整数

ceil(参数):返回大于或等于参数的最小整数

abs(参数):求参数的绝对值

mod(参数1,参数2): 求参数1除以参数2后的余数

substr(x,start ,[length]) 取子串

if()

ifnull()

date_format()

 

聚合函数有:

count() 求该字段的总记录

min()/max() 求字段的最小最大值

sum() 求该字段的和

avg() 求平均

group_concat() 迭代分组后中的每个数据行 

 

 

4、MySQL数据库插入和删除一条数据的过程在底层是如何执行的?

MySQL的加锁, 锁是作用于索引的,行级锁都是基于索引的。只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁! 

分析时主要涉及到的点:

(1)WHERE条件的拆分

(2)关于索引与事务隔离级别的组合

参考:

(1)mysql事务和锁InnoDB  http://www.cnblogs.com/zhaoyl/p/4121010.html

(2)http://www.cnblogs.com/exceptioneye/p/5450874.html 

 

5、MySQL的事务是如何实现的?

事务有ACID属性,所以就是如何保证这几个特性就可以实现事务。

(1)隔离性由锁来保证。一个事务在操作过程中看到了其他事务的结果,如幻读。锁是用于解决隔离性的一种机制。事务的隔离级别通过锁的机制来实现。

(2)一致性由undo log来保证,可以做事务回滚和MVCC的功能。

(3)原子性与持久性由redo log来保证。事务在提交时,必须将该事务的所有日志写入重做日志文件进行持久化。

 

6、MySQL的事务及其隔离级别

数据库的事务隔离级别有(多个事务并发的情况下):

1、read uncommitted

#首先,修改隔离级别
set tx_isolation=‘READ-UNCOMMITTED‘;
select @@tx_isolation;
+------------------+
| @@tx_isolation   |
+------------------+
| READ-UNCOMMITTED |
+------------------+

#事务A:启动一个事务
start transaction;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务B:也启动一个事务(那么两个事务交叉了)
       在事务B中执行更新语句,且不提交
start transaction;
update tx set num=10 where id=1;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务A:那么这时候事务A能看到这个更新了的数据吗?
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |   --->可以看到!说明我们读到了事务B还没有提交的数据
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务B:事务B回滚,仍然未提交
rollback;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务A:在事务A里面看到的也是B没有提交的数据
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 |      --->脏读意味着我在这个事务中(A中),事务B虽然没有提交,但它任何一条数据变化,我都可以看到!
|    2 |    2 |
|    3 |    3 |
+------+------+

 

2、read committed

#首先修改隔离级别
set tx_isolation=‘read-committed‘;
select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+

#事务A:启动一个事务
start transaction;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务B:也启动一个事务(那么两个事务交叉了)在这事务中更新数据,且未提交
start transaction;
update tx set num=10 where id=1;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务A:这个时候我们在事务A中能看到数据的变化吗?
select * from tx; ------------->
+------+------+                |
| id   | num  |                |
+------+------+                |
|    1 |    1 |--->并不能看到!  |
|    2 |    2 |                |
|    3 |    3 |                |
+------+------+                |——>相同的select语句,结果却不一样
                               |
#事务B:如果提交了事务B呢?        |
commit;                        |
                               |
#事务A:                         |
select * from tx; ------------->
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |--->因为事务B已经提交了,所以在A中我们看到了数据变化
|    2 |    2 |
|    3 |    3 |
+------+------+

  

3、repeatable read

#首先,更改隔离级别
set tx_isolation=‘repeatable-read‘;
select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+

#事务A:启动一个事务
start transaction;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 |
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务B:开启一个新事务(那么这两个事务交叉了) 在事务B中更新数据,并提交
start transaction;
update tx set num=10 where id=1;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |
|    2 |    2 |
|    3 |    3 |
+------+------+
commit;

#事务A:这时候即使事务B已经提交了,但A能不能看到数据变化?
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |    1 | --->还是看不到的!(这个级别2不一样,也说明级别3解决了不可重复读问题)
|    2 |    2 |
|    3 |    3 |
+------+------+

#事务A:只有当事务A也提交了,它才能够看到数据变化
commit;
select * from tx;
+------+------+
| id   | num  |
+------+------+
|    1 |   10 |
|    2 |    2 |
|    3 |    3 |
+------+------+

  

4、serializable

#首先修改隔离界别
set tx_isolation=‘serializable‘;
select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| SERIALIZABLE   |
+----------------+

#事务A:开启一个新事务
start transaction;

#事务B:在A没有commit之前,这个交叉事务是不能更改数据的
start transaction;
insert tx values(‘4‘,‘4‘);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
update tx set num=10 where id=1;
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

  

总结一下: 

√: 可能出现    ×: 不会出现

 事务的隔离级别 脏读  事务1更新了记录,但没有提交,事务2读取了更新后的行,然后事务T1回滚,现在T2读取无效。违反隔离性导致的问题,添加行锁实现 不可重复读  事务1读取记录时,事务2更新了记录并提交,事务1再次读取时可以看到事务2修改后的记录(修改批更新或者删除)需要添加行锁进行实现

幻读   事务1读取记录时事务2增加了记录并提交,事务1再次读取时可以看到事务2新增的记录。需要添加表锁进行实现。InnoDB存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)机制解决了该问题

Read uncommitted 
Read committed  ×
Repeatable read × ×
Serializable × × ×


注意点:  (1)要分清不可重复读和幻读的区别 一个是更新记录,另外一个是读取了新增的记录  (2)不同的数据库存储引擎其实并没有严格按照标准来执行,如innodb默认的repeatable read隔离级别下就可以做到避免幻读的问题(采用了Next-Key-Lock锁的算法)。InnoDB和Falcon存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency Control)机制解决了该问题。  

对应着Spring中的5个事务隔离级别(通过lsolation的属性值指定)

 1、default   默认的事务隔离级别。使用的是数据库默认的事务隔离级别

 2、read_uncommitted  读未提交,一个事务可以操作另外一个未提交的事务,不能避免脏读,不可重复读,幻读,隔离级别最低,并发性能最高

 3、read_committed(脏读)  大多数数据库默认的事务隔离级别。读已提交,一个事务不可以操作另外一个未提交的事务, 能防止脏读,不能避免不可重复读,幻读

 4、repeatable_read(不可重复读) innodb默认的事务隔离级别。能够避免脏读,不可重复读,不能避免幻读

 5、serializable(幻读) innodb存储引擎在这个级别才能有分布式XA事务的支持。隔离级别最高,消耗资源最低,代价最高,能够防止脏读, 不可重复读,幻读

  

7、数据库范式与反范式

1、范式

数据库逻辑设计的规范化就是我们一般所说的范式,我们可以这样来简单理解范式: 

(1)第一范式(确保每列保持原子性) 

第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值,就说明该数据库表满足了第一范式。

第一范式的合理遵循需要根据系统的实际需求来定。比如    某些数据库系统中需要用到“地址”这个属性,本来直接将“地址”属性设计成一个数据库表的字段就行。但是如果系统经常会访问“地址”属性中的“城市”部分,那么就非要将“地址”这个属性重新拆分为省份、城市、详细地址等多个部分进行存储,这样在对地址中某一部分操作的时候将非常方便。这样设计才算满足了数据库的第一范式。

 

(2)第二范式(确保表中的每列都和主键相关) 

第二范式在第一范式的基础之上更进一层。第二范式需要确保数据库表中的每一列都和主键相关,而不能只与主键的某一部分相关(主要针对联合主键而言)。也就是说在一个数据库表中,一个表中只能保存一种数据,不可以把多种数据保存在同一张数据库表中。

比如要设计一个订单信息表,因为订单中可能会有多种商品,所以要将订单编号和商品编号作为数据库表的联合主键,如下表所示。

 订单信息表

 技术分享

这样就产生一个问题:这个表中是以订单编号和商品编号作为联合主键。这样在该表中商品名称、单位、商品价格等信息不与该表的主键相关,而仅仅是与商品编号相关。所以在这里违反了第二范式的设计原则。

而如果把这个订单信息表进行拆分,把商品信息分离到另一个表中,把订单项目表也分离到另一个表中,就非常完美了。如下所示。

技术分享

 

(3)第三范式(确保每列都和主键列直接相关,而不是间接相关) 

第三范式需要确保数据表中的每一列数据都和主键直接相关,而不能间接相关。

比如在设计一个订单数据表的时候,可以将客户编号作为一个外键和订单表建立相应的关系。而不可以在订单表中添加关于客户其它信息(比如姓名、所属公司等)的字段。如下面这两个表所示的设计就是一个满足第三范式的数据库表。

技术分享

这样在查询订单信息的时候,就可以使用客户编号来引用客户信息表中的记录,也不必在订单信息表中多次输入客户信息的内容,减小了数据冗余。

更高的范式要求这里就不再作介绍了,个人认为,如果全部达到第二范式,大部分达到第三范式,系统会产生较少的列和较多的表,因而减少了数据冗余,也利于性能的提高。

 

完全按照规范化设计的系统几乎是不可能的,除非系统特别的小,在规范化设计后,有计划地加入冗余是必要的。

从性能角度来说,冗余数据库可以分散数据库压力,冗余表可以分散数据量大的表的并发压力,也可以加快特殊查询的速度,冗余字段可以有效减少数据库表的连接,提高效率。

 

2、反范式  

通过适当的数据冗余,来提高读的效率

技术分享

如何查询订单详情信息?

SELECT
b.用户名,
b.电话,
b.地址,
a.订单ID,
sum(c.商品价格* c.商品数量)AS 订单价格,
c.商品价格,
d.商品名称
FROM ‘订单表‘ a
JOIN ‘用户表‘ b ON a.用户ID = b.用户ID
JOIN ‘订单商品表‘ c ON c.订单ID = b.订单ID
JOIN ‘商品表‘ d ON d.商品ID = c.商品ID
GROUP BY b.用户名,b.电话,b.地址,a.订单ID,c.商品价格,d.商品名称

该查询需要关联多张表,然后再通过sum汇总出价格,查询效率不太高。 如果通过表中部分数据的冗余,进行反范式化设计,如下图:

技术分享

简化sql的查询

 

SELECT
b.用户名,
b.电话,
b.地址,
a.订单ID,
a.订单价格,
c.商品价格,
c.商品名称
FROM ‘订单表‘ a
JOIN ‘用户表‘ b ON a.用户ID = b.用户ID
JOIN ‘订单商品表‘ c ON c.订单ID = b.订单ID

互联网项目中,读写比率大概是3:1或是4:1的关系,读远远高于写,写的时候增加数据冗余,增加了读的效率,这样还是很值得的。

反范式的目的是减少读取数据的开销,那么随之带来的就是更多写数据的开销。因为我们需要预先定稿大量的数据副本。

反范式还会带来数据的不一致,可以通过异步的写来进行定期数据整理,修复不一致的数据。

必看文章:细聊冗余表数据一致性(架构师之路)  http://www.jianshu.com/p/65743dc5bdea

 

Java面试05|MySQL及InnoDB引擎

标签:说明   通过   class   参考   为我   length   count()   column   产生   

人气教程排行