当前位置:Gxlcms >
数据库问题 >
第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
时间:2021-07-01 10:21:17
帮助过:8人阅读
- scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed)
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src
- 14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed
- exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution =
- == Parsed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
-
- == Analyzed Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
-
- == Optimized Logical Plan ==
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
-
- == Physical Plan ==
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None))
-
- Code Generation: false
- == RDD ==
二、InMemoryColumnarTableScan
InMemoryColumnarTableScan是Catalyst里的一个叶子结点,包含了要查询的attributes,和InMemoryRelation(封装了我们缓存的In-Columnar Storage数据结构)。
执行叶子节点,出发execute方法对内存数据进行查询。
1、查询时,调用InMemoryRelation,对其封装的内存数据结构的每个分区进行操作。
2、获取要请求的attributes,如上,查询请求的是src表的value属性。
3、根据目的查询表达式,来获取在对应存储结构中,请求列的index索引。
4、通过ColumnAccessor来对每个buffer进行访问,获取对应查询数据,并封装为Row对象返回。
[java] view plain
copy
- private[sql] case class InMemoryColumnarTableScan(
- attributes: Seq[Attribute],
- relation: InMemoryRelation)
- extends LeafNode {
-
-
- override def output: Seq[Attribute] = attributes
-
-
- override def execute() = {
- relation.cachedColumnBuffers.mapPartitions { iterator =>
-
- val requestedColumns = if (attributes.isEmpty) {
- Seq(0)
- } else {
- attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
- }
-
-
- iterator
- .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))
- .flatMap { columnAccessors =>
- val nextRow = new GenericMutableRow(columnAccessors.length)
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) {
- columnAccessors(i).extractTo(nextRow, i)
- i += 1
- }
- nextRow
- }
-
-
- override def hasNext = columnAccessors.head.hasNext
- }
- }
- }
- }
- }
查询请求的列,如下:
[java] view plain
copy
- scala> exe.optimizedPlan
- res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- Project [value#5]
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
-
-
- scala> val relation = exe.optimizedPlan(1)
- relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
- InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)
-
-
- scala> val request_relation = exe.executedPlan
- request_relation: org.apache.spark.sql.execution.SparkPlan =
- InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None))
-
-
- scala> request_relation.output
- res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
-
- scala> relation.output
- res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5)
-
-
- scala> val attributes = request_relation.output
- attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
整个流程很简洁,关键步骤是第三步。根据ExprId来查找到,请求列的索引
attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
[java] view plain
copy
- scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
- attr_index: Seq[Int] = ArrayBuffer(1)
-
- scala> relation.output.foreach(e=>println(e.exprId))
- ExprId(4)
- ExprId(5)
-
- scala> request_relation.output.foreach(e=>println(e.exprId))
- ExprId(5)
三、ColumnAccessor
ColumnAccessor对应每一种类型,类图如下:
最后返回一个新的迭代器:
[java] view plain
copy
- new Iterator[Row] {
- override def next() = {
- var i = 0
- while (i < nextRow.length) {
- columnAccessors(i).extractTo(nextRow, i)
- i += 1
- }
- nextRow
- }
-
- override def hasNext = columnAccessors.head.hasNext
- }
四、总结
Spark SQL In-Memory Columnar Storage的查询相对来说还是比较简单的,其查询思想主要和存储的数据结构有关。
即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
查询时,根据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。
——EOF——
创文章,转载请注明:
转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory
本文链接地址:http://blog.csdn.net/oopsoom/article/details/39577419
注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。
转自:http://blog.csdn.net/oopsoom/article/details/39577419
第十篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 query
标签:链接地址 入口 csdn asn 表达 inf ast java 计划