当前位置:Gxlcms > 数据库问题 > MySQL--锁

MySQL--锁

时间:2021-07-01 10:21:17 帮助过:13人阅读

l         表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 l         行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 l         页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。 从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。这一点在本书的“开发篇”介绍表类型的选择时,也曾提到过。下面几节我们重点介绍MySQL表锁和 InnoDB行锁的问题,由于BDB已经被InnoDB取代,即将成为历史,在此就不做进一步的讨论了。
  MyISAM表锁 MyISAM存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。随着应用对事务完整性和并发性要求的不断提高,MySQL才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际 InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁的使用。

查询表级锁争用情况

可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺: mysql> show status like ‘table%‘; +-----------------------+-------+ | Variable_name         | Value | +-----------------------+-------+ | Table_locks_immediate | 2979  | | Table_locks_waited    | 0     | +-----------------------+-------+ 2 rows in set (0.00 sec)) 如果Table_locks_waited的值比较高,则说明存在着较严重的表级锁争用情况。

MySQL表级锁的锁模式

MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性如表20-1所示。 表20-1                                            MySQL中的表锁兼容性                
请求锁模式          是否兼容 当前锁模式 None 读锁 写锁
读锁
写锁
可见,对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对 MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如表20-2所示的例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。 表20-2                          MyISAM存储引擎的写阻塞读例子
session_1 session_2
获得表film_text的WRITE锁定 mysql> lock table film_text write; Query OK, 0 rows affected (0.00 sec)  
当前session对锁定表的查询、更新、插入操作都可以执行: mysql> select film_id,title from film_text where film_id = 1001; +---------+-------------+ | film_id | title       | +---------+-------------+ | 1001    | Update Test | +---------+-------------+ 1 row in set (0.00 sec) mysql> insert into film_text (film_id,title) values(1003,‘Test‘); Query OK, 1 row affected (0.00 sec) mysql> update film_text set title = ‘Test‘ where film_id = 1001; Query OK, 1 row affected (0.00 sec) Rows matched: 1  Changed: 1  Warnings: 0 其他session对锁定表的查询被阻塞,需要等待锁被释放: mysql> select film_id,title from film_text where film_id = 1001; 等待
释放锁: mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) 等待
  Session2获得锁,查询返回: mysql> select film_id,title from film_text where film_id = 1001; +---------+-------+ | film_id | title | +---------+-------+ | 1001    | Test  | +---------+-------+ 1 row in set (57.59 sec)

如何加表锁

MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。 给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。例如,有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计 subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL: Select sum(total) from orders; Select sum(subtotal) from order_detail; 这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是: Lock tables orders read local, order_detail read local; Select sum(total) from orders; Select sum(subtotal) from order_detail; Unlock tables; 要特别说明以下两点内容。 ?  上面的例子在LOCK TABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面的章节中还会进一步介绍。 ?  在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。 在如表20-3所示的例子中,一个session使用LOCK TABLE命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。 表20-3                     MyISAM存储引擎的读阻塞写例子
session_1 session_2
获得表film_text的READ锁定 mysql> lock table film_text read; Query OK, 0 rows affected (0.00 sec)  
当前session可以查询该表记录 mysql> select film_id,title from film_text where film_id = 1001; +---------+------------------+ | film_id | title            | +---------+------------------+ | 1001    | ACADEMY DINOSAUR | +---------+------------------+ 1 row in set (0.00 sec) 其他session也可以查询该表的记录 mysql> select film_id,title from film_text where film_id = 1001; +---------+------------------+ | film_id | title            | +---------+------------------+ | 1001    | ACADEMY DINOSAUR | +---------+------------------+ 1 row in set (0.00 sec)
当前session不能查询没有锁定的表 mysql> select film_id,title from film where film_id = 1001; ERROR 1100 (HY000): Table ‘film‘ was not locked with LOCK TABLES 其他session可以查询或者更新未锁定的表 mysql> select film_id,title from film where film_id = 1001; +---------+---------------+ | film_id | title         | +---------+---------------+ | 1001    | update record | +---------+---------------+ 1 row in set (0.00 sec) mysql> update film set title = ‘Test‘ where film_id = 1001; Query OK, 1 row affected (0.04 sec) Rows matched: 1  Changed: 1  Warnings: 0
当前session中插入或者更新锁定的表都会提示错误: mysql> insert into film_text (film_id,title) values(1002,‘Test‘); ERROR 1099 (HY000): Table ‘film_text‘ was locked with a READ lock and can‘t be updated mysql> update film_text set title = ‘Test‘ where film_id = 1001; ERROR 1099 (HY000): Table ‘film_text‘ was locked with a READ lock and can‘t be updated 其他session更新锁定表会等待获得锁: mysql> update film_text set title = ‘Test‘ where film_id = 1001; 等待
释放锁 mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) 等待
  Session获得锁,更新操作完成: mysql> update film_text set title = ‘Test‘ where film_id = 1001; Query OK, 1 row affected (1 min 0.71 sec) Rows matched: 1  Changed: 1  Warnings: 0
当使用LOCK TABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!举例说明如下。 (1)对actor表获得读锁: mysql> lock table actor read; Query OK, 0 rows affected (0.00 sec) (2)但是通过别名访问会提示错误: mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = ‘Lisa‘ and a.last_name = ‘Tom‘ and a.last_name <> b.last_name; ERROR 1100 (HY000): Table ‘a‘ was not locked with LOCK TABLES (3)需要对别名分别锁定: mysql> lock table actor as a read,actor as b read; Query OK, 0 rows affected (0.00 sec) (4)按照别名的查询可以正确执行: mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = ‘Lisa‘ and a.last_name = ‘Tom‘ and a.last_name <> b.last_name; +------------+-----------+------------+-----------+ | first_name | last_name | first_name | last_name | +------------+-----------+------------+-----------+ | Lisa       | Tom       | LISA       | MONROE    | +------------+-----------+------------+-----------+ 1 row in set (0.00 sec)

并发插入(Concurrent Inserts)

上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。 MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。 l         当concurrent_insert设置为0时,不允许并发插入。 l         当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。 l         当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。 在如表20-4所示的例子中,session_1获得了一个表的READ LOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该表进行并发插入操作,这里假设该表中间不存在空洞。 表20-4              MyISAM存储引擎的读写(INSERT)并发例子
session_1 session_2
获得表film_text的READ LOCAL锁定 mysql> lock table film_text read local; Query OK, 0 rows affected (0.00 sec)  
当前session不能对锁定表进行更新或者插入操作: mysql> insert into film_text (film_id,title) values(1002,‘Test‘); ERROR 1099 (HY000): Table ‘film_text‘ was locked with a READ lock and can‘t be updated mysql> update film_text set title = ‘Test‘ where film_id = 1001; ERROR 1099 (HY000): Table ‘film_text‘ was locked with a READ lock and can‘t be updated 其他session可以进行插入操作,但是更新会等待: mysql> insert into film_text (film_id,title) values(1002,‘Test‘); Query OK, 1 row affected (0.00 sec) mysql> update film_text set title = ‘Update Test‘ where film_id = 1001; 等待
当前session不能访问其他session插入的记录: mysql> select film_id,title from film_text where film_id = 1002; Empty set (0.00 sec)  
释放锁: mysql> unlock tables; Query OK, 0 rows affected (0.00 sec) 等待
当前session解锁后可以获得其他session插入的记录: mysql> select film_id,title from film_text where film_id = 1002; +---------+-------+ | film_id | title | +---------+-------+ | 1002    | Test  | +---------+-------+ 1 row in set (0.00 sec) Session2获得锁,更新操作完成: mysql> update film_text set title = ‘Update Test‘ where film_id = 1001; Query OK, 1 row affected (1 min 17.75 sec) Rows matched: 1  Changed: 1  Warnings: 0
可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行 OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。有关OPTIMIZE TABLE语句的详细介绍,可以参见第18章中“两个简单实用的优化方法”一节的内容。

MyISAM的锁调度

前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个 MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM 的调度行为。 ?  通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。 ?  通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。 ?  通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。 虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。     InnoDB锁问题 InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。下面我们先介绍一点背景知识,然后详细讨论InnoDB的锁问题。

背景知识

1.事务(Transaction)及其ACID属性

事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。 l         原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。 l         一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。 l         隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。 l         持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。 银行转帐就是事务的一个典型例子。

2.并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。 l  更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。 l  脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做"脏读"。 l  不可重复读(Non-Repeatable Reads):一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。 l  幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

3.事务隔离级别

在上面讲到的并发事务处理带来的问题中,“更新丢失”通常是应该完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。 “脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本上可分为以下两种。 l  一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。 l  另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度来看,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。 数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。 为了解决“隔离”与“并发”的矛盾,ISO/ANSI SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡 “隔离”与“并发”的矛盾。表20-5很好地概括了这4个隔离级别的特性。 表20-5                                             4种隔离级别比较
读数据一致性及允许的并发副作用 隔离级别 读数据一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted) 最低级别,只能保证不读取物理上损坏的数据
已提交度(Read committed) 语句级
可重复读(Repeatable read) 事务级
可序列化(Serializable) 最高级别,事务级
最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Read committed和Serializable两个标准隔离级别,另外还提供自己定义的Read only隔离级别;SQL Server除支持上述ISO/ANSI SQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL 支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进一步介绍。

获取InnoDB行锁争用情况    

可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况: mysql> show status like ‘innodb_row_lock%‘; +-------------------------------+-------+ | Variable_name                 | Value | +-------------------------------+-------+ | InnoDB_row_lock_current_waits | 0     | | InnoDB_row_lock_time          | 0     | | InnoDB_row_lock_time_avg      | 0     | | InnoDB_row_lock_time_max      | 0     | | InnoDB_row_lock_waits         | 0     | +-------------------------------+-------+ 5 rows in set (0.01 sec) 如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。 具体方法如下: mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB; Query OK, 0 rows affected (0.14 sec) 然后就可以用下面的语句来进行查看: mysql> Show innodb status\G; *************************** 1. row ***************************   Type: InnoDB   Name: Status: … … ------------ TRANSACTIONS ------------ Trx id counter 0 117472192 Purge done for trx‘s n:o < 0 117472190 undo n:o < 0 0 History list length 17 Total number of lock structs in row lock hash table 0 LIST OF TRANSACTIONS FOR EACH SESSION: ---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456 MySQL thread id 200610, query id 291197 localhost root ---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936 MySQL thread id 199285, query id 291199 localhost root Show innodb status … 监视器可以通过发出下列语句来停止查看: mysql> DROP TABLE innodb_monitor; Query OK, 0 rows affected (0.05 sec) 设置监视器后,在SHOW INNODB STATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。

InnoDB的行锁模式及加锁方法

InnoDB实现了以下两种类型的行锁。 l  共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。 l  排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。 另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。 l  意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。 l  意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。 上述锁模式的兼容情况具体如表20-6所示。 表20-6                                            InnoDB行锁模式兼容性列表
请求锁模式    是否兼容 当前锁模式 X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容
如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。 ?  共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。 ?  排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。 用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。 在如表20-7所示的例子中,使用了SELECT ... IN SHARE MODE加锁后再更新记录,看看会出现什么情况,其中actor表的actor_id字段为主键。 表20-7  InnoDB存储引擎的共享锁例子
session_1 session_2
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec)
当前session对actor_id=178的记录加share mode 的共享锁: mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.01 sec)  
  其他session仍然可以查询记录,并也可以对该记录加share mode的共享锁: mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.01 sec)
当前session对锁定的记录进行更新操作,等待锁: mysql> update actor set last_name = ‘MONROE T‘ where actor_id = 178; 等待  
  其他session也对该记录进行更新操作,则会导致死锁退出: mysql> update actor set last_name = ‘MONROE T‘ where actor_id = 178; ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
获得锁后,可以成功更新: mysql> update actor set last_name = ‘MONROE T‘ where actor_id = 178; Query OK, 1 row affected (17.67 sec) Rows matched: 1  Changed: 1  Warnings: 0  
    当使用SELECT...FOR UPDATE加锁后再更新记录,出现如表20-8所示的情况。 表20-8 InnoDB存储引擎的排他锁例子
session_1 session_2
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec)
当前session对actor_id=178的记录加for update的排它锁: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec)  
  其他session可以查询该记录,但是不能对该记录加共享锁,会等待获得锁: mysql> select actor_id,first_name,last_name from actor where actor_id = 178; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE    | +----------+------------+-----------+ 1 row in set (0.00 sec) mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; 等待
当前session可以对锁定的记录进行更新操作,更新后释放锁: mysql> update actor set last_name = ‘MONROE T‘ where actor_id = 178; Query OK, 1 row affected (0.00 sec) Rows matched: 1  Changed: 1  Warnings: 0 mysql> commit; Query OK, 0 rows affected (0.01 sec)  
  其他session获得锁,得到其他session提交的记录: mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update; +----------+------------+-----------+ | actor_id | first_name | last_name | +----------+------------+-----------+ | 178      | LISA       | MONROE T  | +----------+------------+-----------+ 1 row in set (9.59 sec)

InnoDB行锁实现方式

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁! 在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。 (1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。 在如表20-9所示的例子中,开始tab_no_index表没有索引: mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb; Query OK, 0 rows affected (0.15 sec) mysql> insert into tab_no_index values(1,‘1‘),(2,‘2‘),(3,‘3‘),(4,‘4‘); Query OK, 4 rows affected (0.00 sec) Records: 4  Duplicates: 0  Warnings: 0 表20-9   InnoDB存储引擎的表在不使用索引时使用表锁例子
session_1 session_2
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_no_index where id = 1 ; +------+------+ | id   | name | +------+------+ | 1    | 1    | +------+------+ 1 row in set (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_no_index where id = 2 ; +------+------+ | id   | name | +------+------+ | 2    | 2    | +------+------+ 1 row in set (0.00 sec)
mysql> select * from tab_no_index where id = 1 for update; +------+------+ | id   | name | +------+------+ | 1    | 1    | +------+------+ 1 row in set (0.00 sec)  
  mysql> select * from tab_no_index where id = 2 for update; 等待
在如表20 -9所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情况下,InnoDB只能使用表锁。当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如表20-10所示。 创建tab_with_index表,id字段有普通索引: mysql> create table tab_with_index(id int,name varchar(10)) engine=innodb; Query OK, 0 rows affected (0.15 sec) mysql> alter table tab_with_index add index id(id); Query OK, 4 rows affected (0.24 sec) Records: 4  Duplicates: 0  Warnings: 0 表20-10   InnoDB存储引擎的表在使用索引时使用行锁例子
session_1 session_2
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 1 ; +------+------+ | id   | name | +------+------+ | 1    | 1    | +------+------+ 1 row in set (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 2 ; +------+------+ | id   | name | +------+------+ | 2    | 2    | +------+------+ 1 row in set (0.00 sec)
mysql> select * from tab_with_index where id = 1 for update; +------+------+ | id   | name | +------+------+ | 1    | 1    | +------+------+ 1 row in set (0.00 sec)  
  mysql> select * from tab_with_index where id = 2 for update; +------+------+ | id   | name | +------+------+ | 2    | 2    | +------+------+ 1 row in set (0.00 sec)
(2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。应用设计的时候要注意这一点。 在如表20-11所示的例子中,表tab_with_index的id字段有索引,name字段没有索引: mysql> alter table tab_with_index drop index name; Query OK, 4 rows affected (0.22 sec) Records: 4  Duplicates: 0  Warnings: 0 mysql> insert into tab_with_index  values(1,‘4‘); Query OK, 1 row affected (0.00 sec) mysql> select * from tab_with_index where id = 1; +------+------+ | id   | name | +------+------+ | 1    | 1    | | 1    | 4    | +------+------+ 2 rows in set (0.00 sec) 表20-11 InnoDB存储引擎使用相同索引键的阻塞例子       
session_1 session_2
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 and name = ‘1‘ for update; +------+------+ | id   | name | +------+------+ | 1    | 1    | +------+------+ 1 row in set (0.00 sec)  
  虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁: mysql> select * from tab_with_index where id = 1 and name = ‘4‘ for update; 等待
(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。 在如表20-12所示的例子中,表tab_with_index的id字段有主键索引,name字段有普通索引: mysql> alter table tab_with_index add index name(name); Query OK, 5 rows affected (0.23 sec) Records: 5  Duplicates: 0  Warnings: 0 表20-12  InnoDB存储引擎的表使用不同索引的阻塞例子
session_1 session_2
mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0; Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 for update; +------+------+ | id   | name | +------+------+ | 1    | 1    | | 1    | 4    | +------+------+ 2 rows in set (0.00 sec)  
  Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁: mysql> select * from tab_with_index where name = ‘2‘ for update; +------+------+ | id   | name | +------+------+ | 2    | 2    | +------+------+ 1 row in set (0.00 sec)
  由于访问的记录已经被session_1锁定,所以等待获得锁。: mysql> select * from tab_with_index where name = ‘4‘ for update;
(4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。关于MySQL在什么情况下不使用索引的详细讨论,参见本章“索引问题”一节的介绍。 在下面的例子中,检索值的数据类型与索引字段不同,虽然MySQL能够进行数据类型转换,但却不会使用索引,从而导致InnoDB使用表锁。通过用explain检查两条SQL的执行计划,我们可以清楚地看到了这一点。 例子中tab_with_index表的name字段有索引,但是name字段是varchar类型的,如果where条件中不是和varchar类型进行比较,则会对name进行类型转换,而执行的全表扫描。 mysql> alter table tab_no_index add index name(name); Query OK, 4 rows affected (8.06 sec) Records: 4  Duplicates: 0  Warnings: 0 mysql> explain select * from tab_with_index where name = 1 \G *************************** 1. row ***************************            id: 1   select_type: SIMPLE         table: tab_with_index          type: ALL possible_keys: name           key: NULL       key_len: NULL           ref: NULL          rows: 4         Extra: Using where 1 row in set (0.00 sec) mysql> explain select * from tab_with_index where name = ‘1‘ \G *************************** 1. row ***************************            id: 1   select_type: SIMPLE         table: tab_with_index          type: ref possible_keys: name           key: name       key_len: 23           ref: const          rows: 1         Extra: Using where 1 row in set (0.00 sec)

间隙锁(Next-Key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。 举例来说,假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL: Select * from  emp where empid > 100 for update; 是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。 InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对锁机制的影响,以及不同隔离级别下InnoDB使用间隙锁的情况,在后续的章节中会做进一步介绍。 很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。 还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁! 在如表20-13所示的例子中,假如emp表中只有101条记录,其empid的值分别是1,2,......,100,101。 表20-13                InnoDB存储引擎的间隙锁阻塞例子
session_1 session_2
mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation  | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select @@tx_isolation; +-----------------+ | @@tx_isolation  | +-----------------+ | REPEATABLE-READ | +-----------------+ 1 row in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec)
当前session对不存在的记录加for update的锁: mysql> select * from emp where empid = 102 for update; Empty set (0.00 sec)  
  这时,如果其他session插入empid为102的记录(注意:这条记录并不存在),也会出现锁等待: mysql>insert into emp(empid,...) values(102,...); 阻塞等待
Session_1 执行rollback: mysql> rollback; Query OK, 0 rows affected (13.04 sec)  
  由于其他session_1回退后释放了Next-Key锁,当前session可以获得锁并成功插入记录: mysql>insert into emp(empid,...) values(102,...); Query OK, 1 row affected (13.35 sec)

恢复和复制的需要,对InnoDB锁机制的影响

MySQL通过BINLOG录执行成功的INSERT、UPDATE、DELETE等更新数据的SQL语句,并由此实现MySQL数据库的恢复和主从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在Slave Mysql不断做基于BINLOG的恢复)有以下特点。 l  一是MySQL的恢复是SQL语句级的,也就是重新执行BINLOG中的SQL语句。这与Oracle数据库不同,Oracle是基于数据库文件块的。 l  二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更新号(System Change Number,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。 从上面两点可知,MySQL的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读,这已经超过了ISO/ANSI SQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无论在Read Commited或是Repeatable Read隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。 另外,对于“insert  into target_tab select * from source_tab where ...”和“create  table new_tab ...select ... From  source_tab where ...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如表20-14的例子。 表20-14                   CTAS操作给原表加锁例子
session_1 session_2
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = ‘1‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 1    |  1 | |  5 | 1    |  1 | |  6 | 1    |  1 | |  7 | 1    |  1 | |  8 | 1    |  1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = ‘1‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 1    |  1 | |  5 | 1    |  1 | |  6 | 1    |  1 | |  7 | 1    |  1 | |  8 | 1    |  1 | +----+------+----+ 5 rows in set (0.00 sec)
mysql> insert into target_tab select d1,name from source_tab where name = ‘1‘; Query OK, 5 rows affected (0.00 sec) Records: 5  Duplicates: 0  Warnings: 0  
  mysql> update source_tab set name = ‘1‘ where name = ‘8‘; 等待
commit;  
  返回结果 commit;
在上面的例子中,只是简单地读 source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以了。ORACLE正是这么做的,它通过MVCC技术实现的多版本数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现了多版本数据,对普通的SELECT一致性读,也不需要加任何锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读技术! MySQL为什么要这么做呢?其原因还是为了保证恢复和复制的正确性。因为不加锁的话,如果在上述语句执行过程中,其他事务对source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行事务前,先将系统变量 innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如表20-15所示。 表20-15                   CTAS操作不给原表加锁带来的安全问题例子
session_1 session_2
mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql>set innodb_locks_unsafe_for_binlog=‘on‘ Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = ‘1‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 1    |  1 | |  5 | 1    |  1 | |  6 | 1    |  1 | |  7 | 1    |  1 | |  8 | 1    |  1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> set autocommit = 0; Query OK, 0 rows affected (0.00 sec) mysql> select * from target_tab; Empty set (0.00 sec) mysql> select * from source_tab where name = ‘1‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 1    |  1 | |  5 | 1    |  1 | |  6 | 1    |  1 | |  7 | 1    |  1 | |  8 | 1    |  1 | +----+------+----+ 5 rows in set (0.00 sec)
mysql> insert into target_tab select d1,name from source_tab where name = ‘1‘; Query OK, 5 rows affected (0.00 sec) Records: 5  Duplicates: 0  Warnings: 0  
  session_1未提交,可以对session_1的select的记录进行更新操作。 mysql> update source_tab set name = ‘8‘ where name = ‘1‘; Query OK, 5 rows affected (0.00 sec) Rows matched: 5  Changed: 5  Warnings: 0 mysql> select * from source_tab where name = ‘8‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 8    |  1 | |  5 | 8    |  1 | |  6 | 8    |  1 | |  7 | 8    |  1 | |  8 | 8    |  1 | +----+------+----+ 5 rows in set (0.00 sec)
  更新操作先提交 mysql> commit; Query OK, 0 rows affected (0.05 sec)
插入操作后提交 mysql> commit; Query OK, 0 rows affected (0.07 sec)  
此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑: mysql> select * from source_tab where name = ‘8‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 8    |  1 | |  5 | 8    |  1 | |  6 | 8    |  1 | |  7 | 8    |  1 | |  8 | 8    |  1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> select * from target_tab; +------+------+ | id   | name | +------+------+ | 4    | 1.00 | | 5    | 1.00 | | 6    | 1.00 | | 7    | 1.00 | | 8    | 1.00 | +------+------+ 5 rows in set (0.00 sec) mysql> select * from tt1 where name = ‘1‘; Empty set (0.00 sec) mysql> select * from source_tab where name = ‘8‘; +----+------+----+ | d1 | name | d2 | +----+------+----+ |  4 | 8    |  1 | |  5 | 8    |  1 | |  6 | 8    |  1 | |  7 | 8    |  1 | |  8 | 8    |  1 | +----+------+----+ 5 rows in set (0.00 sec) mysql> select * from target_tab; +------+------+ | id   | name | +------+------+ | 4    | 1.00 | | 5    | 1.00 | | 6    | 1.00 | | 7    | 1.00 | | 8    | 1.00 | +------+------+ 5 rows in set (0.00 sec)
从上可见,设置系统变量innodb_locks_unsafe_for_binlog的值为“on”后,InnoDB不再对source_tab加锁,结果也符合应用逻辑,但是如果分析BINLOG的内容: ...... SET TIMESTAMP=1169175130; BEGIN; # at 274 #070119 10:51:57 server id 1  end_log_pos 105   Query   thread_id=1     exec_time=0     error_code=0 SET TIMESTAMP=1169175117; update source_tab set name = ‘8‘ where name = ‘1‘; # at 379 #070119 10:52:10 server id 1  end_log_pos 406   Xid = 5 COMMIT; # at 406 #070119 10:52:14 server id 1  end_log_pos 474   Query   thread_id=2     exec_time=0     error_code=0 SET TIMESTAMP=1169175134; BEGIN; # at 474 #070119 10:51:29 server id 1  end_log_pos 119   Query   thread_id=2     exec_time=0     error_code=0 SET TIMESTAMP=1169175089; insert into target_tab sele

人气教程排行