当前位置:Gxlcms > 数据库问题 > 百倍性能的PL/SQL优化案例(r11笔记第13天)

百倍性能的PL/SQL优化案例(r11笔记第13天)

时间:2021-07-01 10:21:17 帮助过:4人阅读

我相信你是被百倍性能的字样吸引了,不过我所想侧重的是优化的思路,这个比优化技巧更重要,而结果嘛,其实我不希望说成是百倍提升,“”自黑“”一下。

    有一个真实想法和大家讨论一下,就是一个SQL语句如果原本运行20秒,优化到了1秒,性能提升该说是20倍还是提高了95%。当然还见过一种说法,一条SQL语句每次运行20秒,每天运行100次,优化后每次运行1秒,运行还是100次,那么性能提升是说成优化累计时间为100*20-100=1990秒?

好了,我们来看看PL/SQL的优化,前期自己分析了一些信息,可以参考闪回区报警引发的性能问题分析(r11笔记第11天)

总体来说就是数据库层面的闪回区暴增,很快就接近报警阈值。
技术分享图片

发现其中的一个重要因素就是一个update操作时间极长,大概是4个小时,而且资源消耗巨大。

SQL_FULLTEXT
----------------------------------------------------------------------------------------------------
UPDATE CARDINFO A SET A.MAX_LEVEL = NVL((SELECT USER_CLASS FROM ROLE_CLASS_INFO B WHERE A.GROUPID =
B.GROUP_ID AND B.CN_GUID = A.ROLE_GUID), A.MAX_LEVEL) WHERE DRAWED = ‘Y‘而经过数据分析发现这是一个规律性的变化,是在每周二会触发一次。经过确认这是一个scheduler JOB运行导致。而其中的关键就是调用的存储过程。

技术分享图片
好了,重点就是存储过程,当然里面的逻辑还是有一些复杂。我简化一下。

技术分享图片
简单解释一下,数据库a的表card_new中会存储一些礼包卡的数据,用户激活卡信息之后就会插入一条记录。而数据库b则是一个统计数据库,会从数据库a中基于规则表tasklist抽取这些数据,然后在统计端基于业务需求做信息的变更校准,信息都在cardinfo这个表里。规则表tasklist简单补充一下,就好像我们的手机卡号,比如152xxxx001-152xxxx999是一个号段,里面定义的就是这些信息,从源库按照这个规则抽取。

SQL> select count(*)from card_new where cardid between ‘j23450010000‘ and ‘j23500009999‘;  
  COUNT(*)
----------  
      5000

存储过程的信息大体如下

CREATE  or replace PROCEDURE        "PROC_UPDATE_CARDINFO"
AS
BEGIN
  for cur in (select * from tasklist where is_droped = ‘N‘) loop
    MERGE INTO cardinfo a
    USING (SELECT *
             FROM card_new@tmp_link t
            WHERE t.cardid >= cur.t_start
              AND t.cardid <= cur.t_end 
              ) b
    ON (a.cardid = b.cardid)
    WHEN MATCHED THEN
      UPDATE
         SET a.groupid   = b.GROUPID,
             a.role_guid = b.role_guid,
             a.drawed    = b.drawed,
             a.max_level = b.max_level
    WHEN NOT MATCHED THEN
      insert
        (cardid, groupid, role_guid, drawed, max_level)
      values
        (b.cardid, b.groupid, b.role_guid, b.drawed, b.max_level);
    COMMIT;
  end loop;

  /** 做字段1的映射变更*/
  UPDATE cardinfo a
     SET a.used_jewel = (SELECT jewel_total
                           FROM role_costs_info b
                          WHERE b.GROUP_ID = a.groupid
                            AND b.cn_guid = a.role_guid)
   WHERE drawed = ‘Y‘ and cardid in(select cardid from tmp_cardinfo);
  COMMIT;

  /**  做字段2的映射变更**/
  UPDATE cardinfo a
     SET a.max_level = nvl((SELECT user_class
                             FROM role_class_info b
                            WHERE a.groupid = b.GROUP_ID
                              AND b.cn_guid = a.role_guid),
                           a.max_level)
   WHERE drawed = ‘Y‘ and cardid in(select cardid from tmp_cardinfo);
  COMMIT;
END;
/

上面的表,除了规则表tasklist是不到1万条数据库(类似号段的数据),其它的数据量都在亿级,所以优化空间很大,优化难度不小。

    和开发同学简单了解了需求之后,我的初步结论是update的部分有待提高,因为update的部分变更都是全表更新,这个影响面较大,没法确定增量的数据,基本上按照1周的频率来说,增量数据应该会在百万以内。而查看后面几个update的部分,发现变更的数据量都在千万级别,性能极差。

不过在优化的过程中,感觉我似乎偏离了方向,因为目标端按照现有的条件和补充条件发现始终变更的数据量太大,都是千万级别,和预期相去甚远,简单来说,按照目前的条件得到的数据不是增量数据,所以我的注意力就关注在了源头的数据抽取上。

因为源库的配置较好,使用了PCIE-SSD,查询亿级大表也蛮给力,我在备库查询了一下数据的情况。

SQL> SELECT count(t.cardid)
  2  FROM card_new t ,tasklist cur
  3  WHERE t.cardid >= cur.t_start
  4  AND t.cardid <= cur.t_end;
COUNT(T.CARDID)
---------------
      599845975

一看结果有5亿多条数据,当然大家仔细看,其实语句本身也是有问题的。

其实按照逻辑抽取的数据有2亿,也就是源库表中所有的数据。

如此一来,下游的数据变更都会直接影响,导致了现在的状况。

所以瓶颈很明显,在两个地方
1.抽取的时候对线上业务有性能压力,是全量抽取
2.更新的时候是全量更新,字段匹配数据范围太大

 

改进思路相对就很简单了。

  1. 明确增量的数据

  2. 使用临时表或者是在cardinfo中标记增量数据进行增量数据变更

  3. 进行完整的数据测试,保证性能改进真实有效。

我们来逐个说一下。

  1. 增量的数据,我查看了源表的字段,里面有一个基于时间的字段,看字段的名字应该是礼品卡的激活时间。和开发同事进行了确认,这个地方明确下来。

我们按照这样的思路来看,增量数据大概在7万左右。

 SQL> select count(*)from card_new where DRAWDATE>sysdate-10;
  COUNT(*)
----------
     78174

如此一来就抓住了问题的本质,后面的更新部分就可以限制条件,避免全量更新。我就创建建了一个临时表来处理。得到从源库抽取所得的增量数据。

2.增量数据变更优化

原本的更新是这样的逻辑,

 UPDATE cardinfo a
     SET a.used_jewel = (SELECT jewel_total
                           FROM role_costs_info b
                          WHERE b.GROUP_ID = a.groupid
                            AND b.cn_guid = a.role_guid)
   WHERE drawed = ‘Y‘ ;

改进之后,限制了条件,就是下面的形式

 UPDATE cardinfo a
     SET a.used_jewel = (SELECT jewel_total
                           FROM role_costs_info b
                          WHERE b.GROUP_ID = a.groupid
                            AND b.cn_guid = a.role_guid)
   WHERE drawed = ‘Y‘ and cardid in(select cardid from tmp_cardinfo);

当然还有一些小细节处做了改进,再次先不赘述。

3.性能测试

接下来就是性能测试了,如何真实的模拟测试这个问题,11g中要充分利用Sapshot Standby的福利。

 

备库切换为Snapshot Standby的方法
dgbroker中把当前的备库设置为disable
然后使用sqlplus在备库操作:

recover managed standby database cancel; --取消日志应用
alter database convert to snapshot standby; --切换为Snapshot Standby
alter database open;  --切换后打开数据库
select database_role,open_mode from v$database;  --检查变更是否生效

 

然后开始性能测试,我把数据源指向了源库对应的备库,这样对线上就没有直接的压力。在目标数据库中修改存储过程,运行测试。

SQL> exec PROC_UPDATE_CARDINFO1;
PL/SQL procedure successfully completed.
Elapsed: 00:01:04.38

原本执行至少4个小时的存储过程现在1分钟即可搞定。


完成测试,开始恢复备库为Physical Standby:
sqlplus备库:  shutdown immediate
 startup mount
 alter database convert to physical standby; --切换数据库为physical standby
shutdown immediate --修改后数据库为nomount,重新启动
startup mount
select database_role,open_mode from v$database;
alter database open;
然后在主库使用DG Broker来enable原来的备库即可。

小结

整个一个流程走下来,让我对这个问题的认知,从原本的闪回区报警逐步发掘,扩展到PL/SQL的存储过程实现,当然这个部分还是花了些时间熟悉了下业务,为了更好的满足优化需求,优化中尤其需要牢牢把握性能瓶颈,抓住本质,然后逐个击破即可。而对于性能问题的测试,Snapshot Standby就是一个很不错的补充。评估运行时间等都会更加真实有效。

最后的性能提升,从4个小时提升为1分钟。

--------------------------

一周以后,我再次跟踪这个问题,确认已经修复。闪回前的使用率大大降低。
技术分享图片

而实际的SQL执行情况比预期还要好一些,原本的update语句执行需要个把小时,当前执行只需要1秒钟。

百倍性能的PL/SQL优化案例(r11笔记第13天)

标签:技巧   分析   creat   语句   流程   需求   bsp   自己   set   

人气教程排行