当前位置:Gxlcms > 数据库问题 > 数据库秒级平滑扩容架构方案

数据库秒级平滑扩容架构方案

时间:2021-07-01 10:21:17 帮助过:22人阅读

 。

 

(3)互联网架构需要保证数据库高可用,常见的一种方式,使用双主同步+keepalived+虚ip的方式保证数据库的可用性:

技术分享图片

如上图:两个相互同步的主库使用相同的虚ip。

技术分享图片

如上图:当主库挂掉的时候,虚ip自动漂移到另一个主库,整个过程对调用方透明,通过这种方式保证数据库的高可用。

 

关于高可用的更多细节,详见《究竟啥才是互联网架构“高可用”》。

 

(4)综合上文的(2)和(3),线上实际的架构,既有水平切分,又有高可用保证,所以实际的数据库架构是这样的:

技术分享图片

 

提问:如果数据量持续增大,分2个库性能扛不住了,该怎么办呢?

回答:继续水平拆分,拆成更多的库,降低单库数据量,增加库主库实例(机器)数量,提高性能。

 

最终问题抛出:分成x个库后,随着数据量的增加,要增加到y个库,数据库扩容的过程中,能否平滑,持续对外提供服务,保证服务的可用性,是本文要讨论的问题。

 

二、停服务方案

在讨论平滑方案之前,先简要说明下“x库拆y库”停服务的方案:

(1)站点挂一个公告“为了为广大用户提供更好的服务,本站点/游戏将在今晚00:00-2:00之间升级,届时将不能登录,用户周知”

(2)停服务

(3)新建y个库,做好高可用

(4)数据迁移,重新分布,写一个数据迁移程序,从x个库里导入到y个库里,路由规则由%x升级为%y

(5)修改服务配置,原来x行配置升级为y行

(6)重启服务,连接新库重新对外提供服务

整个过程中,最耗时的是第四步数据迁移

 

回滚方案

如果数据迁移失败,或者迁移后测试失败,则将配置改回x库,恢复服务,改天再挂公告。

 

方案优点:简单

 

方案缺点

(1)停服务,不高可用

(2)技术同学压力大,所有工作要在规定时间内做完,根据经验,压力越大约容易出错(这一点很致命)

(3)如果有问题第一时间没检查出来,启动了服务,运行一段时间后再发现有问题,难以回滚,需要回档,可能会丢失一部分数据

 

有没有更平滑的方案呢?

 

三、秒级、平滑、帅气方案

技术分享图片

再次看一眼扩容前的架构,分两个库,假设每个库1亿数据量,如何平滑扩容,增加实例数,降低单库数据量呢?三个简单步骤搞定。

 

(1)修改配置

技术分享图片

主要修改两处:

a)数据库实例所在的机器做双虚ip,原来%2=0的库是虚ip0,现在增加一个虚ip00,%2=1的另一个库同理

b)修改服务的配置(不管是在配置文件里,还是在配置中心),将2个库的数据库配置,改为4个库的数据库配置,修改的时候要注意旧库与辛苦的映射关系

%2=0的库,会变为%4=0与%4=2;

%2=1的部分,会变为%4=1与%4=3;

这样修改是为了保证,拆分后依然能够路由到正确的数据。

 

(2)reload配置,实例扩容

技术分享图片

服务层reload配置,reload可能是这么几种方式:

a)比较原始的,重启服务,读新的配置文件

b)高级一点的,配置中心给服务发信号,重读配置文件,重新初始化数据库连接池

 

不管哪种方式,reload之后,数据库的实例扩容就完成了,原来是2个数据库实例提供服务,现在变为4个数据库实例提供服务,这个过程一般可以在秒级完成。

 

整个过程可以逐步重启,对服务的正确性和可用性完全没有影响

a)即使%2寻库和%4寻库同时存在,也不影响数据的正确性,因为此时仍然是双主数据同步的

b)服务reload之前是不对外提供服务的,冗余的服务能够保证高可用

 

完成了实例的扩展,会发现每个数据库的数据量依然没有下降,所以第三个步骤还要做一些收尾工作。

 

(3)收尾工作,数据收缩

技术分享图片

有这些一些收尾工作

a)把双虚ip修改回单虚ip

b)解除旧的双主同步,让成对库的数据不再同步增加

c)增加新的双主同步,保证高可用

d)删除掉冗余数据,例如:ip0里%4=2的数据全部干掉,只为%4=0的数据提供服务啦

 

这样下来,每个库的数据量就降为原来的一半数据收缩完成

 

四、总结

技术分享图片

该帅气方案能够实现n库扩2n库的秒级、平滑扩容,增加数据库服务能力,降低单库一半的数据量,其核心原理是:成倍扩容,避免数据迁移

 

迁移步骤

(1)修改配置

(2)reload配置,实例扩容完成

(3)删除冗余数据等收尾工作,数据量收缩完成

 

以上内容均来自微信公众号“架构师之路”胡剑老师的文章,欢迎关注。

数据库秒级平滑扩容架构方案

标签:出错   新建   将不   简单   style   分布   配置   数据同步   拆分   

人气教程排行