时间:2021-07-01 10:21:17 帮助过:15人阅读
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的; 2.不可能在非叶子结点命中; 3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层; 4.更适合文件索引系统;
哈希索引只有Memory, NDB两种引擎支持,Memory引擎默认支持哈希索引,如果多个hash值相同,出现哈希碰撞,那么索引以链表方式存储。
但是,Memory引擎表只对能够适合机器的内存切实有限的数据集。
要使InnoDB或MyISAM支持哈希索引,可以通过伪哈希索引来实现,叫自适应哈希索引。
主要通过增加一个字段,存储hash值,将hash值建立索引,在插入和更新的时候,建立触发器,自动添加计算后的hash到表里。
FULLTEXT:全文索引
RTREE:R树索引
索引建立在表的列上(字段)的。
在where后面的列建立索引才会加快查询速度。
pages<---索引(属性)<----查数据。
添加索引的方法:
alter table test add index index_name(name); create index index_name on test(name);
语法格式:
alter table 表 add index 索引名称(name);
创建普通索引方法一:
mysql> ALTER TABLE PLAYERS ADD INDEX name_idx(NAME); mysql> desc PLAYERS; +------------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+-------------+------+-----+---------+-------+ | NAME | char(15) | NO | MUL | NULL | |
创建普通索引方法二:
mysql> ALTER TABLE PLAYERS ADD INDEX name_idx(NAME); mysql> desc PLAYERS; +------------+-------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +------------+-------------+------+-----+---------+-------+ | NAME | char(15) | NO | MUL | NULL | |
alter table PLAYERS delete INDEX name_idx;
mysql> show index from PLAYERS\G *************************** 1. row *************************** Table: PLAYERS Non_unique: 0 Key_name: PRIMARY Seq_in_index: 1 Column_name: PLAYERNO Collation: A Cardinality: 14 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment:
主键索引
只能有一个主键。
主键索引:列的内容是唯一值,例如学号.
表创建的时候至少要有一个主键索引,最好和业务无关。
普通索引
加快查询速度,工作中优化数据库的关键。
在合适的列上建立索引,让数据查询更高效。
create index index_name on test(name); alter table test add index index_name(name);
用了索引,查一堆内容。
在where条件关键字后面的列建立索引才会加快查询速度.
select id,name from test where state=1 order by id group by name;
唯一索引
内容唯一,但不是主键。
create unique index index_name on test(name);
建立表时
CREATE TABLE `test` ( `id` int(4) NOT NULL AUTO_INCREMENT, `name` char(20) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=UTF8;
建立表后增加
CREATE TABLE `test` ( `id` int(4) NOT NULL, `name` char(20) NOT NULL ) ENGINE=InnoDB DEFAULT CHARSET=UTF8;
增加自增主键
alter table test change id id int(4) primary key not null auto_increment;
前缀索引:根据字段的前N个字符建立索引
create index index_name on test(name(8));
联合索引:多个字段建立一个索引。
where a女生 and b身高165 and c身材好 index(a,b,c)
特点:前缀生效特性。
a,ab,abc 可以走索引。 b ac bc c 不走索引(5.6之后 ac 可以走主键索引)。
原则:把最常用来作为条件查询的列放在前面。
示例:
创建表
create table people (id int not null auto_increment ,name char(20),sr(20),sex int ,age int, primary key (id));
创建联合索引
mysql> alter table people add key name_sex_idx(name,sex) -> ; Query OK, 0 rows affected (0.02 sec) Records: 0 Duplicates: 0 Warnings: 0
查看索引的类型
mysql> desc people; +-------+----------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------+----------+------+-----+---------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | name | char(20) | YES | MUL | NULL | | | sex | int(11) | YES | | NULL | | | age | int(11) | YES | | NULL | | +-------+----------+------+-----+---------+----------------+
建立唯一键索引
mysql> alter table people add unique key age_uidx(age); Query OK, 0 rows affected (0.01 sec) Records: 0 Duplicates: 0 Warnings: 0
查看数据表
mysql> desc people; +-------+----------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------+----------+------+-----+---------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | name | char(20) | YES | MUL | NULL | | | sex | int(11) | YES | | NULL | | | age | int(11) | YES | UNI | NULL | | +-------+----------+------+-----+---------+----------------+ 4 rows in set (0.00 sec)
联合主键是联合索引的特殊形式
PRIMARY KEY (`Host`,`User`) alter table test add sex char(4) not null; create index ind_name_sex on test(name,sex);
前缀加联合索引
create index index_name on test(name(8),sex(2));
1、把一个大的不使用索引的SQL语句按照功能进行拆分
2、长的SQL语句无法使用索引,能不能变成2条短的SQL语句让它分别使用上索引。
3、对SQL语句功能的拆分和修改
4、减少“烂”SQL由运维(DBA)和开发交流(确认),共同确定如何改,最终由DBA执行
5、制定开发流程
1、唯一值少的列上不适合建立索引或者建立索引效率低。例如:性别列
2、小表可以不建立索引,100条记录。
3、对于数据仓库,大量全表扫描的情况,建索引反而会慢
select count(distinct user) from mysql.user; select count(distinct user,host) from mysql.user;
1、找到慢SQL。
show processlist;
记录慢查询日志。
2、explain select句,条件列多。
3、查看表的唯一值数量:
select count(distinct user) from mysql.user; select count(distinct user,host) from mysql.user;
条件列多。可以考虑建立联合索引。
4、建立索引(流量低谷)
force index
5、拆开语句(和开发)。
6、like ‘%%‘不用mysql
7、进行判断重复的行数
查看行数:
mysql> select count(*) from city; +----------+ | count(*) | +----------+ | 4079 | +----------+ 1 row in set (0.00 sec)
查看去重后的行数:
mysql> select count(distinct countrycode) from city; +-----------------------------+ | count(distinct countrycode) | +-----------------------------+ | 232 | +-----------------------------+ 1 row in set (0.00 sec)
在工作中,我们用于捕捉性能问题最常用的就是打开慢查询,定位执行效率差的SQL,那么当我们定位到一个SQL以后还不算完事,我们还需要知道该SQL的执行计划,比如是全表扫描,还是索引扫描,这些都需要通过EXPLAIN去完成。
EXPLAIN命令是查看优化器如何决定执行查询的主要方法。可以帮助我们深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。
需要注意的是,生成的QEP并不确定,它可能会根据很多因素发生改变。MySQL不会将一个QEP和某个给定查询绑定,QEP将由SQL语句每次执行时的实际情况确定,即便使用存储过程也是如此。尽管在存储过程中SQL语句都是预先解析过的,但QEP仍然会在每次调用存储过程的时候才被确定。
mysql> explain select id,name from test where name=‘clsn‘; +----+-------------+-------+------+---------------+----------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+----------+---------+-------+------+-------------+ | 1 | SIMPLE | test | ref | name_idx | name_idx | 24 | const | 1 | Using where | +----+-------------+-------+------+---------------+----------+---------+-------+------+-------------+ 1 row in set (0.00 sec)
SQL_NO_CACHE的作用是禁止缓存查询结果。
使用where条件查找
mysql> explain select user,host from mysql.user where user=‘root‘ and host=‘127.0.0.1‘; +----+-------------+-------+-------+---------------+---------+---------+-------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+---------+---------+-------------+------+-------------+ | 1 | SIMPLE | user | const | PRIMARY | PRIMARY | 228 | const,const | 1 | Using index | +----+-------------+-------+-------+---------------+---------+---------+-------------+------+-------------+ 1 row in set (0.00 sec)
mysql> explain select d1.age, t2.id from (select age,name from t1 where id in (1,2))d1, t2 where d1.age=t2.age group by d1.age, t2.id order by t2.id; +----+-------------+------------+-------+---------------+---------+---------+--------+------+---------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------+---------+---------+--------+------+---------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 2 | Using temporary; Using filesort | | 1 | PRIMARY | t2 | ref | age | age | 5 | d1.age | 1 | Using where; Using index | | 2 | DERIVED | t1 | range | PRIMARY | PRIMARY | 4 | NULL | 2 | Using where | +----+-------------+------------+-------+---------------+---------+---------+--------+------+---------------------------------+ 3 rows in set (0.00 sec)
1.EXPLAIN SELECT …… 2.EXPLAIN EXTENDED SELECT …… 将执行计划"反编译"成SELECT语句,运行SHOW WARNINGS 可得到被MySQL优化器优化后的查询语句 3.EXPLAIN PARTITIONS SELECT …… 用于分区表的EXPLAIN生成QEP的信息
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
包含一组数字,表示查询中执行select子句或操作表的顺序
【示例一】id相同,执行顺序由上至下
mysql> explain select t2.* from t1, t2, t3 where t1.id=t2.id and t1.id=t3.id and t1.name=‘‘; +----+-------------+-------+--------+---------------+---------+---------+------------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+---------------+---------+---------+------------+------+--------------------------+ | 1 | SIMPLE | t1 | ref | PRIMARY,name | name | 63 | const | 1 | Using where; Using index | | 1 | SIMPLE | t2 | eq_ref | PRIMARY | PRIMARY | 4 | test.t1.id | 1 | | | 1 | SIMPLE | t3 | eq_ref | PRIMARY | PRIMARY | 4 | test.t1.id | 1 | Using index | +----+-------------+-------+--------+---------------+---------+---------+------------+------+--------------------------+ 3 rows in set (0.00 sec)
【示例二】如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
mysql> explain select t2.* from t2 where id = (select id from t1 where id = (select t3.id from t3 where t3.name=‘‘)); +----+-------------+-------+------+---------------+------+---------+------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+------+-----------------------------------------------------+ | 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | Impossible WHERE noticed after reading const tables | | 2 | SUBQUERY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | no matching row in const table | | 3 | SUBQUERY | t3 | ref | name | name | 63 | | 1 | Using where; Using index | +----+-------------+-------+------+---------------+------+---------+------+------+-----------------------------------------------------+ 3 rows in set (0.00 sec)
【示例三】id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行
mysql> explain select t2.* from (select t3.id from t3 where t3.name=‘‘)s1, t2 where s1.id=t2.id; +----+-------------+------------+--------+---------------+---------+---------+-------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+--------+---------------+---------+---------+-------+------+--------------------------+ | 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | | | 1 | PRIMARY | t2 | const | PRIMARY | PRIMARY | 4 | const | 1 | | | 2 | DERIVED | t3 | ref | name | name | 63 | | 1 | Using where; Using index | +----+-------------+------------+--------+---------------+---------+---------+-------+------+--------------------------+ 3 rows in set (0.00 sec)
示查询中每个select子句的类型(简单OR复杂) a. SIMPLE:查询中不包含子查询或者UNION b. 查询中若包含任何复杂的子部分,最外层查询则被标记为:PRIMARY c. 在SELECT或WHERE列表中包含了子查询,该子查询被标记为:SUBQUERY d. 在FROM列表中包含的子查询被标记为:DERIVED(衍生)用来表示包含在from子句中的子查询的select,mysql会递归执行并将结果放到一个临时表中。服务器内部称为"派生表",因为该临时表是从子查询中派生出来的 e. 若第二个SELECT出现在UNION之后,则被标记为UNION;若UNION包含在FROM子句的子查询中,外层SELECT将被标记为:DERIVED f. 从UNION表获取结果的SELECT被标记为:UNION RESULT
说明:
SUBQUERY和UNION还可以被标记为DEPENDENT和UNCACHEABLE。
DEPENDENT意味着select依赖于外层查询中发现的数据。
UNCACHEABLE意味着select中的某些 特性阻止结果被缓存于一个item_cache中。
【示例】
mysql> explain select d1.name, ( select id from t3) d2 from (select id,name from t1 where name=‘‘)d1 union (select name,id from t2); +----+--------------+------------+--------+---------------+------+---------+------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------+------+---------+------+------+--------------------------+ | 1 | PRIMARY | <derived3> | system | NULL | NULL | NULL | NULL | 0 | const row not found | | 3 | DERIVED | t1 | ref | name | name | 63 | | 1 | Using where; Using index | | 2 | SUBQUERY | t3 | index | NULL | age | 5 | NULL | 6 | Using index | | 4 | UNION | t2 | index | NULL | name | 63 | NULL | 4 | Using index | | NULL | UNION RESULT | <union1,4> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------+------+---------+------+------+--------------------------+ 5 rows in set (0.00 sec)
内容说明:
第一行:id列为1,表示第一个select,select_type列的primary表 示该查询为外层查询,table列被标记为<derived3>,表示查询结果来自一个衍生表,其中3代表该查询衍生自第三个select查询,即id为3的select。 第二行:id为3,表示该查询的执行次序为2( 4 => 3<