mongodb06---索引
时间:2021-07-01 10:21:17
帮助过:4人阅读
1:单列索引
2:多列索引
3:子文档索引
索引性质:
0:普通索引
1.唯一索引
2.稀疏索引
3.哈希索引
语法: db.collections.ensureIndex({field:1});
注: 1:默认是增序建索引。
2:默认索引是用btree组织
例: db.goods.ensureIndex({goods_id:1});
解释:1. 按goods_id增序规律建立索引。
2. 用btree组织索引文件
索引创建
1:索引提高查询速度,降低写入速度,权衡常用的查询字段,不必在太多列上建索引
2.在mongodb中,索引可以按字段升序
/降序来创建,便于排序
3.默认是用btree来组织索引文件,
2.4版本以后,也允许建立hash索引.
use shop
db.goods.find(
{
goods_name:{$regex:/索爱
/}
}
).explain(): //查看查询计划
"cursor" : "BasicCursor",
----说明没有索引发挥作用(因为没有索引,插入数据的时候要写入索引文件,所以写入更改速度减慢了),则从头找到尾,mongo默认是btree建的索引,
"nscannedObjects" :
1000 ---理论上要扫描多少行
cursor" : "BtreeCursor sn_1", 用到的btree索引
创建普通的单列索引:db.goods.ensureIndex({field:1/-1}); 1是升续 2是降续
db.goods.ensureIndex( {shop_price:-1} )
db.goods.find({shop_price:1328}).explain()
查看当前索引状态: db.collection.getIndexes();
use shop
db.bar.ensureIndex( {title:-1} )
db.bar.getIndexes():
[
{
"v" : 2,
"key" : {
"_id" : 1 //id索引
},
"name" : "_id_",
"ns" : "shop.bar"
},
{
"v" : 2,
"key" : {
"title" : -1.0 //title索引
},
"name" : "title_-1",
"ns" : "shop.bar"
}
]
use shop
db.goods.getIndexes()
db.goods.find({goods_name:{$regex:/索爱
/}}).explain():
{
"v" : 2,
"key" : {
"goods_name" : -1.0
},
"name" : "goods_name_-1",
"ns" : "shop.goods"
}:
"indexName" : "goods_name_-1",
"indexBounds" : {
"goods_name" : [
"[/索爱/, /索爱/]",
"({}, \"\"]"
]
}
db.collection.dropIndex({filed:1/-1});
//删除索引要指定
-1,1类型。
db.collection.dropIndexes(); //全部删除,id索引默认就在,不能删掉,
//多列索引,单列索引只是查询一个列的时候用到,当需要按照多列查询的时候就要用到多列索引。
2列分别加索引是各自不影响,多列索引是把2列当成一个整体看没有区分2列了。
创建多列索引 db.collection.ensureIndex({field1:1/-1, field2:
1/-1});
db.goods.ensureIndex({goods_name:1,shop_price:
1})
//经常goods_name和shop_price要一起查,比单列索引要快。
db.goods.getIndexes():
[
{
"v" : 2,
"key" : {
"_id" : 1
},
"name" : "_id_", //id索引
"ns" : "shop.goods"
},
{
"v" : 2,
"key" : {
"goods_name" : 1.0, //多列索引
"shop_price" : 1.0
},
"name" : "goods_name_1_shop_price_1", //索引的名字
"ns" : "shop.goods" //namespace
}
]
db.goods.find(
{
goods_name:{$regex:/诺基亚
/},
$and:
[
{shop_price:{$gt:100}},
{shop_price:{$gt:300}}
]
}
).explain():
"indexName" : "goods_name_1_shop_price_1",
"indexVersion" : 2,
"indexBounds" : {
"goods_name" : [
"[\"\", {})",
"[/诺基亚/, /诺基亚/]"
],
"shop_price" : [
"(300.0, inf.0]"
]
}
//子文档索引
创建子文档索引
db.collection.ensureIndex({filed.subfield:1/-1});
db.goods.insert({name:
‘nokia‘,spc:{weight:
120,area:
‘taiwan‘}})
db.goods.insert({name:
‘sanxing‘,spc:{weight:
100,area:
‘hanguo‘}})
db.goods.find({name:‘nokia‘})
//查询area
=‘taiwan‘的,
db.goods.find({area:‘taiwan‘})
//因为没有area属性,area是在spc属性下面,这种有子文档的
db.goods.find({‘spc.area‘:
‘taiwan‘})
db.goods.ensureIndex({‘spc.area‘:
1})
//子文档就索引
db.goods.getIndexes()
db.goods.find({‘spc.area‘:
‘taiwan‘}).explain():
{
"v" : 2,
"key" : {
"spc.area" : 1.0
},
"name" : "spc.area_1",
"ns" : "shop.goods"
}
"indexName" : "spc.area_1",
"indexBounds" : {
"spc.area" : [
"[\"taiwan\", \"taiwan\"]"
]
}
//刚才创建的都是普通索引,
//唯一索引:这个列上的值不能重复
创建唯一索引:
db.collection.ensureIndex({filed.subfield:1/-1}, {
unique:true});
db.teacher.insert({email:
‘11@163.com‘})
db.teacher.insert({email:
‘22@163.com‘})
db.teacher.getIndexes()
db.teacher.ensureIndex({email:1},{
unique:true})
db.teacher.getIndexes():
{
"v" : 2,
"unique" : true,
"key" : {
"email" : 1.0
},
"name" : "email_1",
"ns" : "shop.teacher"
}
db.teacher.insert({email:
‘11@163.com‘})
//插入失败,唯一索引不能重复
db.teacher.find({email:‘22@163.com‘})
//稀疏索引:
db.teacher.dropIndexes();
db.teacher.getIndexes() //只有id索引
db.teacher.insert({})
db.find():
{
"_id" : ObjectId("5a4748a2e4778e360cdb54bc"),"email" : "11@163.com"
}
{
"_id" : ObjectId("5a474d4ce4778e360cdb54c4") //根本就没有email属性
}
{
"_id" : ObjectId("5a474d85e4778e360cdb54c5"),"email" : "22@163.com"
}
db.teacher.ensureIndex({email:1})
db.teacher.find({email:null}):
{
"_id" : ObjectId("5a474d4ce4778e360cdb54c4")
}
db.teacher.find({email:null}).explain()
//把email为null的也查到了(错的,是把没有email列的属性的查到了),说明把null也建立了索引(是没有email列不是email列为null,这不是表,每一行是没有关系的)
//稀疏索引,有这个列就建立索引,没有这个列就不建立索引,
db.teacher.dropIndexes() //删除索引,建立稀疏索引
db.teacher.ensureIndex({email:1},{sparse:true});
{
"v" : 2,
"key" : {
"email" : 1.0
},
"name" : "email_1",
"ns" : "shop.teacher",
"sparse" : true
}
db.teacher.find({email:null}).explain()
//(把没有email列的查到了)查到了,但是没有用到email索引,
/*
创建稀疏索引:
稀疏索引的特点------如果针对field做索引,针对不含field列的文档(每一行的各列没有关系),将不建立索引.
与之相对,普通索引,会把该文档的field列的值认为NULL,并建索引.
适宜于: 小部分文档含有某列时.
db.collection.ensureIndex({field:1/-1},{sparse:true});
> db.tea.find();
{ "_id" : ObjectId("5275f99b87437c610023597b"), "email" : "a@163.com" }
{ "_id" : ObjectId("5275f99e87437c610023597c"), "email" : "b@163.com" }
{ "_id" : ObjectId("5275f9e887437c610023597e"), "email" : "c@163.com" }
{ "_id" : ObjectId("5275fa3887437c6100235980") }
如上内容,最后一行没有email列,
如果分别加普通索引,和稀疏索引,
对于最后一行的email分别当成null 和 忽略最后一行来处理.
根据{email:null}来查询,前者能查到,而稀疏索引查不到最后一行. */
//哈希索引:
Btree:根据二叉树左右移动来查找。
哈希:有一个哈希函数,任意给一个值根据这个函数算,算到数据在硬盘的位置,不用查找直接算一下就可以了,时间复杂度为1,没有btree有顺序性,胡乱的查找并不快(顺序查找要快)。对于范围的查询和顺序读取要慢。
db.teacher.dropIndexes()
db.teacher.ensureIndex({email:‘hashed‘})
db.teacher.getIndexes():
{
"v" : 2,
"key" : {
"email" : "hashed"
},
"name" : "email_hashed",
"ns" : "shop.teacher"
}
db.teacher.find({email:‘22@163.com‘}).explain():
"indexName" : "email_hashed",
"indexBounds" : {
"email" : [
"[-8642475493292651614, -8642475493292651614]"
]
}
创建哈希索引(2.4新增的)
哈希索引速度比普通索引快,但是,无能对范围查询进行优化.
适宜于---随机性强的散列
db.collection.ensureIndex({
file:’hashed’});
重建索引
一个表经过很多次修改后,导致表的文件产生空洞,索引文件也如此.
可以通过索引的重建,减少索引文件碎片,并提高索引的效率.
类似mysql中的optimize table
db.collection.reIndex() //重建之后索引还在。
db.collection.ensureIndex({field:‘hashed‘});
说明:
1. 可以单个字段或子文本字段上建立hash索引
2. 不可以针对"多个列"建立hash索引
例: db.collection.ensureIndex(‘intro.height‘:
‘hashed‘);
删除指定索引:
db.collections.dropIndex({filed:1/-1/‘hashed‘});
例:
db.user.dropIndex({
‘intro.height‘:
‘hashed‘});
删除所有索引:
db.collection.dropIndexes();
注:_id列的索引不会被删除
mongodb06---索引
标签:exe icc tle hang explain mysql mongodb 类型 散列