时间:2021-07-01 10:21:17 帮助过:12人阅读
执行上面的代码就得到了
A.Annotations/test下的xml格式文件,只要修改type=train就可以得到训练集的xml格式的gt文件,下同。
B.ImageSets\Main下的test.txt文件
C.执行代码同级目录下的test.txt和test_name_size.txt。这两个文件本应该是用VOCDevit的create_data.sh实现的,此处用python脚本替代了,更方便。注意B和C中的txt文件内容不同,区别如下图:
四、制作lmdb格式数据。
现在目录格式是这样的:
所以需要:
1。建立mydataset文件夹,把刚才制作好的VOC整个文件夹丢进去
2。建立result文件夹,并把刚才产生的几个文件丢进去。
其中的labelmap_ICDAR2013.prototxt是自己建的,内容如下:
item { name: "none_of_the_above" label: 0 display_name: "background" } item { name: "text" label: 1 display_name: "text" }
3.create_data.sh是VOC0712示例修改过来的,代码如下:
cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) redo=1 #caffe_root="/dataL/ljy/caffe-ssd" data_root_dir="$cur_dir/mydataset" type=test dataset_name="ICDAR2013" mapfile="$cur_dir/result/$dataset_name/labelmap_$dataset_name.prototxt" anno_type="detection" db="lmdb" min_dim=0 max_dim=0 width=0 height=0 extra_cmd="--encode-type=jpg --encoded" if [ $redo ] then extra_cmd="$extra_cmd --redo" fi for subset in $type do python create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir result/$dataset_name/$subset.txt result/$dataset_name/$dataset_name"_"$subset"_"$db result/$dataset_name done
4.create_annoset.py是SSD自带工具修改过来的,修改如下:
import argparse import os import shutil import subprocess import sys from caffe.proto import caffe_pb2 from google.protobuf import text_format if __name__ == "__main__": parser = argparse.ArgumentParser(description="Create AnnotatedDatum database") parser.add_argument("root", help="The root directory which contains the images and annotations.") parser.add_argument("listfile", help="The file which contains image paths and annotation info.") parser.add_argument("outdir", help="The output directory which stores the database file.") parser.add_argument("exampledir", help="The directory to store the link of the database files.") parser.add_argument("--redo", default = False, action = "store_true", help="Recreate the database.") parser.add_argument("--anno-type", default = "classification", help="The type of annotation {classification, detection}.") parser.add_argument("--label-type", default = "xml", help="The type of label file format for detection {xml, json, txt}.") parser.add_argument("--backend", default = "lmdb", help="The backend {lmdb, leveldb} for storing the result") parser.add_argument("--check-size", default = False, action = "store_true", help="Check that all the datum have the same size.") parser.add_argument("--encode-type", default = "", help="What type should we encode the image as (‘png‘,‘jpg‘,...).") parser.add_argument("--encoded", default = False, action = "store_true", help="The encoded image will be save in datum.") parser.add_argument("--gray", default = False, action = "store_true", help="Treat images as grayscale ones.") parser.add_argument("--label-map-file", default = "", help="A file with LabelMap protobuf message.") parser.add_argument("--min-dim", default = 0, type = int, help="Minimum dimension images are resized to.") parser.add_argument("--max-dim", default = 0, type = int, help="Maximum dimension images are resized to.") parser.add_argument("--resize-height", default = 0, type = int, help="Height images are resized to.") parser.add_argument("--resize-width", default = 0, type = int, help="Width images are resized to.") parser.add_argument("--shuffle", default = False, action = "store_true", help="Randomly shuffle the order of images and their labels.") parser.add_argument("--check-label", default = False, action = "store_true", help="Check that there is no duplicated name/label.") args = parser.parse_args() root_dir = args.root list_file = args.listfile out_dir = args.outdir example_dir = args.exampledir redo = args.redo anno_type = args.anno_type label_type = args.label_type backend = args.backend check_size = args.check_size encode_type = args.encode_type encoded = args.encoded gray = args.gray label_map_file = args.label_map_file min_dim = args.min_dim max_dim = args.max_dim resize_height = args.resize_height resize_width = args.resize_width shuffle = args.shuffle check_label = args.check_label # check if root directory exists if not os.path.exists(root_dir): print "root directory: {} does not exist".format(root_dir) sys.exit() # add "/" to root directory if needed if root_dir[-1] != "/": root_dir += "/" # check if list file exists if not os.path.exists(list_file): print "list file: {} does not exist".format(list_file) sys.exit() # check list file format is correct with open(list_file, "r") as lf: for line in lf.readlines(): img_file, anno = line.strip("\n").strip("\r").split(" ") if not os.path.exists(root_dir + img_file): print "image file: {} does not exist".format(root_dir + img_file) if anno_type == "classification": if not anno.isdigit(): print "annotation: {} is not an integer".format(anno) elif anno_type == "detection": #print(root_dir + anno) #print(os.path.exists(root_dir + anno)) if not os.path.exists(root_dir + anno): print "annofation file: {} does not exist".format(root_dir + anno) sys.exit() break # check if label map file exist if anno_type == "detection": if not os.path.exists(label_map_file): print "label map file: {} does not exist".format(label_map_file) sys.exit() label_map = caffe_pb2.LabelMap() lmf = open(label_map_file, "r") try: text_format.Merge(str(lmf.read()), label_map) except: print "Cannot parse label map file: {}".format(label_map_file) sys.exit() out_parent_dir = os.path.dirname(out_dir) if not os.path.exists(out_parent_dir): os.makedirs(out_parent_dir) if os.path.exists(out_dir) and not redo: print "{} already exists and I do not hear redo".format(out_dir) sys.exit() if os.path.exists(out_dir): shutil.rmtree(out_dir) # get caffe root directory #caffe_root = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) #print(caffe_root) caffe_root=‘/dataL/ljy/caffe-ssd‘ if anno_type == "detection": cmd = "{}/build/tools/convert_annoset" " --anno_type={}" " --label_type={}" " --label_map_file={}" " --check_label={}" " --min_dim={}" " --max_dim={}" " --resize_height={}" " --resize_width={}" " --backend={}" " --shuffle={}" " --check_size={}" " --encode_type={}" " --encoded={}" " --gray={}" " {} {} {}" .format(caffe_root, anno_type, label_type, label_map_file, check_label, min_dim, max_dim, resize_height, resize_width, backend, shuffle, check_size, encode_type, encoded, gray, root_dir, list_file, out_dir) elif anno_type == "classification": cmd = "{}/build/tools/convert_annoset" " --anno_type={}" " --min_dim={}" " --max_dim={}" " --resize_height={}" " --resize_width={}" " --backend={}" " --shuffle={}" " --check_size={}" " --encode_type={}" " --encoded={}" " --gray={}" " {} {} {}" .format(caffe_root, anno_type, min_dim, max_dim, resize_height, resize_width, backend, shuffle, check_size, encode_type, encoded, gray, root_dir, list_file, out_dir) print cmd process = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE) output = process.communicate()[0] if not os.path.exists(example_dir): os.makedirs(example_dir) link_dir = os.path.join(example_dir, os.path.basename(out_dir)) print(link_dir) ‘‘‘ if os.path.exists(link_dir): os.unlink(link_dir) os.symlink(out_dir, link_dir) ‘‘‘
最后三句是创建快捷方式,可以注释掉,里面改的是img_file, anno = line.strip("\n").strip("\r").split(" ") 和caffe_root=‘/dataL/ljy/caffe-ssd‘。第一句是因为windows和linux系统对换行的处理不同,所以如果create_voc_data.py是在windows上执行的,后面这个sh在Linux上执行报错就要改这句。后面这句是把caffe目录切过来。只改这三个地方就可以了。
执行create_data.sh就可以在result/ICDAR2013/下面看到我们得到的lmdb格式的数据了。对于相同数据集只要改type=test或者train就行,不用数据集只要改数据集名字就可以。
目标检测lmdb数据格式制作
标签:action UI dir 分享 测试 ready random 文件内容 hid