当前位置:Gxlcms > 数据库问题 > SDP(4):ScalikeJDBC- JDBC-Engine:Updating

SDP(4):ScalikeJDBC- JDBC-Engine:Updating

时间:2021-07-01 10:21:17 帮助过:16人阅读

/**
 * SQL abstraction.
 *
 * @param statement SQL template
 * @param rawParameters parameters
 * @param f  extractor function
 * @tparam A return type
 */
abstract class SQL[A, E <: WithExtractor](
  val statement: String,
  private[scalikejdbc] val rawParameters: Seq[Any]
)(f: WrappedResultSet => A)
{...}

Update功能置于下面这几个子类中:

/**
 * SQL which execute java.sql.Statement#executeUpdate().
 *
 * @param statement SQL template
 * @param parameters parameters
 * @param before before filter
 * @param after after filter
 */
class SQLUpdate(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
    val before: (PreparedStatement) => Unit
)(
    val after: (PreparedStatement) => Unit
) {

  def apply()(implicit session: DBSession): Int = {
    val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
    session match {
      case AutoSession =>
        DB.autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
      case NamedAutoSession(name, _) =>
        NamedDB(name, session.settings).autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
      case ReadOnlyAutoSession =>
        DB.readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
      case ReadOnlyNamedAutoSession(name, _) =>
        NamedDB(name, session.settings).readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
      case _ =>
        DBSessionWrapper(session, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*)
    }
  }

}

/**
 * SQL which execute java.sql.Statement#execute().
 *
 * @param statement SQL template
 * @param parameters parameters
 * @param before before filter
 * @param after after filter
 */
class SQLExecution(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
    val before: (PreparedStatement) => Unit
)(
    val after: (PreparedStatement) => Unit
) {

  def apply()(implicit session: DBSession): Boolean = {
    val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
    val f: DBSession => Boolean = DBSessionWrapper(_, attributesSwitcher).executeWithFilters(before, after, statement, parameters: _*)
    // format: OFF
    session match {
      case AutoSession                       => DB.autoCommit(f)
      case NamedAutoSession(name, _)         => NamedDB(name, session.settings).autoCommit(f)
      case ReadOnlyAutoSession               => DB.readOnly(f)
      case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
      case _                                 => f(session)
    }
    // format: ON
  }

}
/**
 * SQL which execute java.sql.Statement#executeBatch().
 *
 * @param statement SQL template
 * @param parameters parameters
 */
class SQLBatch(val statement: String, val parameters: Seq[Seq[Any]], val tags: Seq[String] = Nil) {

  def apply[C[_]]()(implicit session: DBSession, cbf: CanBuildFrom[Nothing, Int, C[Int]]): C[Int] = {
    val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
    val f: DBSession => C[Int] = DBSessionWrapper(_, attributesSwitcher).batch(statement, parameters: _*)
    // format: OFF
    session match {
      case AutoSession                       => DB.autoCommit(f)
      case NamedAutoSession(name, _)         => NamedDB(name, session.settings).autoCommit(f)
      case ReadOnlyAutoSession               => DB.readOnly(f)
      case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
      case _                                 => f(session)
    }
    // format: ON
  }

}

按照JDBC-Engine的功能设计要求,我们大约把Update功能分成数据表构建操作DDL、批次运算Batch、和普通Update几种类型。我们是通过JDBCContext来定义具体的Update功能类型:

object JDBCContext {
    type SQLTYPE = Int
    val SQL_SELECT: Int = 0
    val SQL_EXEDDL= 1
    val SQL_UPDATE = 2
    val RETURN_GENERATED_KEYVALUE = true
    val RETURN_UPDATED_COUNT = false

  }

  case class JDBCContext(
                          dbName: Symbol,
                          statements: Seq[String] = Nil,
                          parameters: Seq[Seq[Any]] = Nil,
                          fetchSize: Int = 100,
                          queryTimeout: Option[Int] = None,
                          queryTags: Seq[String] = Nil,
                          sqlType: JDBCContext.SQLTYPE = JDBCContext.SQL_SELECT,
                          batch: Boolean = false,
                          returnGeneratedKey: Seq[Option[Any]] = Nil,
                          // no return: None, return by index: Some(1), by name: Some("id")
                          preAction: Option[PreparedStatement => Unit] = None,
                          postAction: Option[PreparedStatement => Unit] = None) {

    ctx =>

    //helper functions

    def appendTag(tag: String): JDBCContext = ctx.copy(queryTags = ctx.queryTags :+ tag)

    def appendTags(tags: Seq[String]): JDBCContext = ctx.copy(queryTags = ctx.queryTags ++ tags)

    def setFetchSize(size: Int): JDBCContext = ctx.copy(fetchSize = size)

    def setQueryTimeout(time: Option[Int]): JDBCContext = ctx.copy(queryTimeout = time)

    def setPreAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
      if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
        !ctx.batch && ctx.statements.size == 1)
        ctx.copy(preAction = action)
      else
        throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
    }

    def setPostAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
      if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
        !ctx.batch && ctx.statements.size == 1)
        ctx.copy(postAction = action)
      else
        throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
    }

    def appendDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
      if (ctx.sqlType == JDBCContext.SQL_EXEDDL) {
        ctx.copy(
          statements = ctx.statements ++ Seq(_statement),
          parameters = ctx.parameters ++ Seq(Seq(_parameters))
        )
      } else
        throw new IllegalStateException("JDBCContex setting error: option not supported!")
    }

    def appendUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
      if (ctx.sqlType == JDBCContext.SQL_UPDATE && !ctx.batch) {
        ctx.copy(
          statements = ctx.statements ++ Seq(_statement),
          parameters = ctx.parameters ++ Seq(_parameters),
          returnGeneratedKey = ctx.returnGeneratedKey ++ (if (_returnGeneratedKey) Seq(Some(1)) else Seq(None))
        )
      } else
        throw new IllegalStateException("JDBCContex setting error: option not supported!")
    }

    def appendBatchParameters(_parameters: Any*): JDBCContext = {
      if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
        throw new IllegalStateException("JDBCContex setting error: batch parameters only supported for SQL_UPDATE and batch = true!")

      var matchParams = true
      if (ctx.parameters != Nil)
        if (ctx.parameters.head.size != _parameters.size)
          matchParams = false
      if (matchParams) {
        ctx.copy(
          parameters = ctx.parameters ++ Seq(_parameters)
        )
      } else
        throw new IllegalStateException("JDBCContex setting error: batch command parameters not match!")
    }

    def setBatchReturnGeneratedKeyOption(returnKey: Boolean): JDBCContext = {
      if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
         throw new IllegalStateException("JDBCContex setting error: only supported in batch update commands!")
      ctx.copy(
        returnGeneratedKey = if (returnKey) Seq(Some(1)) else Nil
      )
    }

     def setQueryCommand(_statement: String, _parameters: Any*): JDBCContext = {
        ctx.copy(
          statements = Seq(_statement),
          parameters = Seq(_parameters),
          sqlType = JDBCContext.SQL_SELECT,
          batch = false
        )
      }

      def setDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
        ctx.copy(
          statements = Seq(_statement),
          parameters = Seq(_parameters),
          sqlType = JDBCContext.SQL_EXEDDL,
          batch = false
        )
      }

      def setUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
        ctx.copy(
          statements = Seq(_statement),
          parameters = Seq(_parameters),
          returnGeneratedKey = if (_returnGeneratedKey) Seq(Some(1)) else Seq(None),
          sqlType = JDBCContext.SQL_UPDATE,
          batch = false
        )
      }
      def setBatchCommand(_statement: String): JDBCContext = {
        ctx.copy (
          statements = Seq(_statement),
          sqlType = JDBCContext.SQL_UPDATE,
          batch = true
        )
      }
  }

JDBCContext还提供了不少的Helper函数来协助构建特别功能的JDBCContext对象,如:setQueryCommand, setDDLCommand, setUpdateCommand, setBatchCommand。这些Helper函数提供Update功能定义的几个主要元素包括:SQL语句主体包括参数占位的statement、输入参数parameter、是否需要返回系统自动产生的主键returnGeneratedKey。在ScalikeJDBC中所有类型的Update功能可以用下面几类内部函数实现,包括:

  private[this] def batchInternal[C[_], A](
    template: String,
    paramsList: Seq[Seq[Any]],
    execute: StatementExecutor => scala.Array[A]
  )(implicit cbf: CanBuildFrom[Nothing, A, C[A]]): C[A] = {
    ensureNotReadOnlySession(template)
    paramsList match {
      case Nil => Seq.empty[A].to[C]
      case _ =>
        using(createBatchStatementExecutor(
          conn = conn,
          template = template,
          returnGeneratedKeys = false,
          generatedKeyName = None
        )) { executor =>
          paramsList.foreach {
            params =>
              executor.bindParams(params)
              executor.addBatch()
          }
          execute(executor).to[C]
        }
    }
  }
  private[this] def updateWithFiltersInternal[A](
    returnGeneratedKeys: Boolean,
    before: (PreparedStatement) => Unit,
    after: (PreparedStatement) => Unit,
    template: String,
    execute: StatementExecutor => A,
    params: Seq[Any]
  ): A = {
    ensureNotReadOnlySession(template)
    using(createStatementExecutor(
      conn = conn,
      template = template,
      params = params,
      returnGeneratedKeys = returnGeneratedKeys
    )) {
      executor =>
        before(executor.underlying)
        val count = execute(executor)
        after(executor.underlying)
        count
    }
  }
  private[this] def updateWithAutoGeneratedKeyNameAndFiltersInternal[A](
    returnGeneratedKeys: Boolean,
    generatedKeyName: String,
    before: (PreparedStatement) => Unit,
    after: (PreparedStatement) => Unit,
    template: String,
    execute: StatementExecutor => A,
    params: Seq[Any]
  ): A = {
    ensureNotReadOnlySession(template)
    using(createStatementExecutor(
      conn = conn,
      template = template,
      params = params,
      returnGeneratedKeys = returnGeneratedKeys,
      generatedKeyName = Option(generatedKeyName)
    )) {
      executor =>
        before(executor.underlying)
        val count = execute(executor)
        after(executor.underlying)
        count
    }
  }

我们可以看到所有类型的Update都是通过构建StatementExecutor并按其属性进行运算来实现的:

/**
 * java.sql.Statement Executor.
 *
 * @param underlying preparedStatement
 * @param template SQL template
 * @param singleParams parameters for single execution (= not batch execution)
 * @param isBatch is batch flag
 */
case class StatementExecutor(
    underlying: PreparedStatement,
    template: String,
    connectionAttributes: DBConnectionAttributes,
    singleParams: Seq[Any] = Nil,
    tags: Seq[String] = Nil,
    isBatch: Boolean = false,
    settingsProvider: SettingsProvider = SettingsProvider.default
) extends LogSupport with UnixTimeInMillisConverterImplicits with AutoCloseable {...}

这个StatementExcutor类的属性和我们的JDBCContext属性很接近。好了,回到JDBC-Engine Update功能定义。首先是DDL功能:

 def jdbcExcuteDDL(ctx: JDBCContext): Try[String] = {
       if (ctx.sqlType != SQL_EXEDDL) {
        Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_EXEDDL‘!"))
      }
      else {
        NamedDB(ctx.dbName) localTx { implicit session =>
          Try {
                ctx.statements.foreach { stm =>
                  val ddl = new SQLExecution(statement = stm, parameters = Nil)(
                    before = WrappedResultSet => {})(
                    after = WrappedResultSet => {})

                  ddl.apply()
              }
            "SQL_EXEDDL executed succesfully."
          }
        }
      }
    }

 所有JDBC-Engine的Update功能都是一个事务处理Transaction中的多条更新语句。DDL语句不需要参数所以只需要提供statement就足够了。下面是这个函数的使用示范:

 ConfigDBsWithEnv("dev").setup(h2)
  ConfigDBsWithEnv("dev").loadGlobalSettings()

  val dropSQL: String ="""
      drop table members
    """

  val createSQL: String ="""
    create table members (
      id serial not null primary key,
      name varchar(30) not null,
      description varchar(1000),
      birthday date,
      created_at timestamp not null,
      picture blob
    )"""

  var ctx = JDBCContext(h2)
    try {
      ctx = ctx.setDDLCommand(dropSQL)
        .appendDDLCommand(createSQL)
    }
    catch {
       case e: Exception => println(e.getMessage)
    }

  val resultCreateTable = jdbcExcuteDDL(ctx)

  resultCreateTable match {
    case Success(msg) => println(msg)
    case Failure(err) => println(s"${err.getMessage}")
  }

在这里我们修改了上次使用的members表,增加了一个blob类的picture列。这个示范在一个完整的Transaction里包括了两条DDL语句。

批次更新batch-update是指多条输入参数在一条统一的statement上施用:

  def jdbcBatchUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
      implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
      if (ctx.statements == Nil)
        throw new IllegalStateException("JDBCContex setting error: statements empty!")
      if (ctx.sqlType != SQL_UPDATE) {
        Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_UPDATE‘!"))
      }
      else {
        if (ctx.batch) {
          if (noReturnKey(ctx)) {
            val usql = SQL(ctx.statements.head)
              .tags(ctx.queryTags: _*)
              .batch(ctx.parameters: _*)
            Try {
              NamedDB(ctx.dbName) localTx { implicit session =>
                ctx.queryTimeout.foreach(session.queryTimeout(_))
                usql.apply[Seq]()
                Seq.empty[Long].to[C]
              }
            }
          } else {
            val usql = new SQLBatchWithGeneratedKey(ctx.statements.head, ctx.parameters, ctx.queryTags)(None)
            Try {
              NamedDB(ctx.dbName) localTx { implicit session =>
                ctx.queryTimeout.foreach(session.queryTimeout(_))
                usql.apply[C]()
              }
            }
          }

        } else {
          Failure(new IllegalStateException("JDBCContex setting error: must set batch = true !"))
        }
      }
    }

如果batch-update是某种Insert操作的话我们可以通过cox.batch注明返回由JDBC系统自动产生的唯一键。这些主键一般在构建表时注明,包括:serial, auto_increment等。如果不返回主键则返回update语句的更新状态如更新数据条数等。在上面这个函数里SQLBatchWithGeneratedKey.apply()返回insert数据主键,所以statement必须是INSERT语句。SQLBatch.apply()则用来运算update语句并返回更新数据的条数。下面是jdbcBatchUpdate函数的使用示范:

 val insertSQL = "insert into members(name,birthday,description,created_at,picture) values (?, ?, ?, ?, ?)"
  val dateCreated = DateTime.now

  import java.io.FileInputStream

  val picfile = new File("/users/tiger/Nobody.png")
  val fis = new FileInputStream(picfile)

  ctx = JDBCContext(h2)
  try {
    ctx = ctx.setBatchCommand(insertSQL).appendBatchParameters(
      "John",new LocalDate("2008-03-01"),"youngest user",dateCreated,None).appendBatchParameters(
      "peter", None, "no birth date", dateCreated, fis)
      .appendBatchParameters(
        "susan", None, "no birth date", dateCreated, None)
      .setBatchReturnGeneratedKeyOption(JDBCContext.RETURN_GENERATED_KEYVALUE)
  }
  catch {
    case e: Exception => println(e.getMessage)
  }

  var resultInserts = jdbcBatchUpdate(ctx)

  resultInserts match {
    case Success(msg) => println(msg)
    case Failure(err) => println(s"${err.getMessage}")
  }

上面这个例子里一个transaction批次包含了三条Insert语句,其中一条涉及存入picture字段:我们只需要把图像文件InputStream作为普通参数传人即可。我们也可以把任何类型的非batch-update语句捆绑在统一的transaction里运算,而且可以指定每条update返回类型:自动产生的主键或者更新数据条数:

def jdbcTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
      implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
      if (ctx.statements == Nil)
        throw new IllegalStateException("JDBCContex setting error: statements empty!")
      if (ctx.sqlType != SQL_UPDATE) {
        Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_UPDATE‘!"))
      }
      else {
        if (!ctx.batch) {
          if (ctx.statements.size == 1)
            singleTxUpdate(ctx)
          else
            multiTxUpdates(ctx)
        } else
          Failure(new IllegalStateException("JDBCContex setting error: must set batch = false !"))

      }
    }

这个update函数又被细分为单条语句singleTxUpdate和多条语句multiTxUpdates。无论单条或多条update函数又被分为返回主键或更新状态类型的函数:

 

 private def singleTxUpdateWithReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
       implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
       val Some(key) :: xs = ctx.returnGeneratedKey
       val params: Seq[Any] = ctx.parameters match {
         case Nil => Nil
         case p@_ => p.head
       }
       val usql = new SQLUpdateWithGeneratedKey(ctx.statements.head, params, ctx.queryTags)(key)
       Try {
         NamedDB(ctx.dbName) localTx { implicit session =>
           session.fetchSize(ctx.fetchSize)
           ctx.queryTimeout.foreach(session.queryTimeout(_))
           val result = usql.apply()
           Seq(result).to[C]
         }
       }
     }

      private def singleTxUpdateNoReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
        implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
      val params: Seq[Any] = ctx.parameters match {
        case Nil => Nil
        case p@_ => p.head
      }
      val before = ctx.preAction match {
        case None => pstm: PreparedStatement => {}
        case Some(f) => f
      }
      val after = ctx.postAction match {
        case None => pstm: PreparedStatement => {}
        case Some(f) => f
      }
      val usql = new SQLUpdate(ctx.statements.head,params,ctx.queryTags)(before)(after)
      Try {
        NamedDB(ctx.dbName) localTx {implicit session =>
          session.fetchSize(ctx.fetchSize)
          ctx.queryTimeout.foreach(session.queryTimeout(_))
          val result = usql.apply()
          Seq(result.toLong).to[C]
        }
      }

    }

    private def singleTxUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
      implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
      if (noReturnKey(ctx))
        singleTxUpdateNoReturnKey(ctx)
      else
        singleTxUpdateWithReturnKey(ctx)
    }

    private def noReturnKey(ctx: JDBCContext): Boolean = {
      if (ctx.returnGeneratedKey != Nil) {
        val k :: xs = ctx.returnGeneratedKey
         k match {
          case None => true
          case Some(k) => false
        }
      } else true
    }

    def noActon: PreparedStatement=>Unit = pstm => {}

    def multiTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
      implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
        Try {
          NamedDB(ctx.dbName) localTx { implicit session =>
            session.fetchSize(ctx.fetchSize)
            ctx.queryTimeout.foreach(session.queryTimeout(_))
            val keys: Seq[Option[Any]] = ctx.returnGeneratedKey match {
              case Nil => Seq.fill(ctx.statements.size)(None)
              case k@_ => k
            }
            val sqlcmd = ctx.statements zip ctx.parameters zip keys
            val results = sqlcmd.map { case ((stm, param), key) =>
              key match {
                case None =>
                  new SQLUpdate(stm, param, Nil)(noActon)(noActon).apply().toLong
                case Some(k) =>
                  new SQLUpdateWithGeneratedKey(stm, param, Nil)(k).apply().toLong
              }
            }
            results.to[C]
          }
        }
     }

下面是这个函数的使用示范: 

 val updateSQL = "update members set description = ? where id < ?"
  ctx = JDBCContext(h2)
  try {
     ctx = ctx.setUpdateCommand(JDBCContext.RETURN_GENERATED_KEYVALUE,insertSQL,
       "max", None, "no birth date", dateCreated, None)
       .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT, updateSQL, "id++", 10)
      .appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT,"delete members where id = 1")
  }
  catch {
    case e: Exception => println(e.getMessage)
  }
  var resultUpdates = jdbcTxUpdates[Vector](ctx)

  resultUpdates match {
    case Success(msg) => println(msg)
    case Failure(err) => println(s"${err.getMessage}")
  }

在这个例子里我们把insert,update和delete混在了一个transaction里。最后,我们再把试验数据,包括blob字段读出来:

  //data model
  case class Member(
                     id: Long,
                     name: String,
                     description: Option[String] = None,
                     birthday: Option[LocalDate] = None,
                     createdAt: DateTime,
                     picture: InputStream)

  //data row converter
  val toMember = (rs: WrappedResultSet) => Member(
    id = rs.long("id"),
    name = rs.string("name"),
    description = rs.stringOpt("description"),
    birthday = rs.jodaLocalDateOpt("birthday"),
    createdAt = rs.jodaDateTime("created_at"),
    picture = rs.binaryStream("picture")
  )

  ctx = JDBCContext(h2)
  ctx = ctx.setQueryCommand("select * from members").setQueryTimeout(Some(1000))

  val vecMember: Vector[Member] = jdbcQueryResult[Vector,Member](ctx,toMember)

  val buffer = new Array[Byte](1024)

  vecMember.foreach {row =>
    println(s"id: ${row.id} name: ${row.name}")
    println(s"name: ${row.name}")
    if (row.picture == null)
      println("picture empty")
    else {
      val fname = s"/users/tiger/pic${row.id}.png"
      val file = new File(fname)
      val output = new FileOutputStream(file)

      println(s"saving picture to $fname")

      row.picture.available()
      while (row.picture.read(buffer) > 0) {
        output.write(buffer)
      }

      output.close()

    }
  }

下面是本次讨论的示范源代码:

build.sbt

name := "learn-scalikeJDBC"

version := "0.1"

scalaVersion := "2.12.4"

// Scala 2.10, 2.11, 2.12
libraryDependencies ++= Seq(
  "org.scalikejdbc" %% "scalikejdbc"       % "3.1.0",
  "org.scalikejdbc" %% "scalikejdbc-test"   % "3.1.0"   % "test",
  "org.scalikejdbc" %% "scalikejdbc-config"  % "3.1.0",
  "com.h2database"  %  "h2"                % "1.4.196",
  "mysql" % "mysql-connector-java" % "6.0.6",
  "org.postgresql" % "postgresql" % "42.2.0",
  "commons-dbcp" % "commons-dbcp" % "1.4",
  "org.apache.tomcat" % "tomcat-jdbc" % "9.0.2",
  "com.zaxxer" % "HikariCP" % "2.7.4",
  "com.jolbox" % "bonecp" % "0.8.0.RELEASE",
  "com.typesafe.slick" %% "slick" % "3.2.1",
  "ch.qos.logback"  %  "logback-classic"   % "1.2.3"
)

resources/application.conf

 

# JDBC settings
test {
  db {
    h2 {
      driver = "org.h2.Driver"
      url = "jdbc:h2:tcp://localhost/~/slickdemo"
      user = ""
      password = ""
      poolInitialSize = 5
      poolMaxSize = 7
      poolConnectionTimeoutMillis = 1000
      poolValidationQuery = "select 1 as one"
      poolFactoryName = "commons-dbcp2"
    }
  }

  db.mysql.driver = "com.mysql.cj.jdbc.Driver"
  db.mysql.url = "jdbc:mysql://localhost:3306/testdb"
  db.mysql.user = "root"
  db.mysql.password = "123"
  db.mysql.poolInitialSize = 5
  db.mysql.poolMaxSize = 7
  db.mysql.poolConnectionTimeoutMillis = 1000
  db.mysql.poolValidationQuery = "select 1 as one"
  db.mysql.poolFactoryName = "bonecp"

  # scallikejdbc Global settings
  scalikejdbc.global.loggingSQLAndTime.enabled = true
  scalikejdbc.global.loggingSQLAndTime.logLevel = info
  scalikejdbc.global.loggingSQLAndTime.warningEnabled = true
  scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000
  scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn
  scalikejdbc.global.loggingSQLAndTime.singleLineMode = false
  scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false
  scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
}
dev {
  db {
    h2 {
      driver = "org.h2.Driver"
      url = "jdbc:h2:tcp://localhost/~/slickdemo"
      user = ""
      password = ""
      poolFactoryName = "hikaricp"
      numThreads = 10
      maxConnections = 12
      minConnections = 4
      keepAliveConnection = true
    }
    mysql {
      driver = "com.mysql.cj.jdbc.Driver"
      url = "jdbc:mysql://localhost:3306/testdb"
      user = "root"
      password = "123"
      poolInitialSize = 5
      poolMaxSize = 7
      poolConnectionTimeoutMillis = 1000
      poolValidationQuery = "select 1 as one"
      poolFactoryName = "bonecp"

    }
    postgres {
      driver = "org.postgresql.Driver"
      url = "jdbc:postgresql://localhost:5432/testdb"
      user = "root"
      password = "123"
      poolFactoryName = "hikaricp"
      numThreads = 10
      maxConnections                    

人气教程排行