时间:2021-07-01 10:21:17 帮助过:16人阅读
/**
* SQL abstraction.
*
* @param statement SQL template
* @param rawParameters parameters
* @param f extractor function
* @tparam A return type
*/
abstract class SQL[A, E <: WithExtractor](
val statement: String,
private[scalikejdbc] val rawParameters: Seq[Any]
)(f: WrappedResultSet => A)
{...}
Update功能置于下面这几个子类中:
/**
* SQL which execute java.sql.Statement#executeUpdate().
*
* @param statement SQL template
* @param parameters parameters
* @param before before filter
* @param after after filter
*/
class SQLUpdate(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
val before: (PreparedStatement) => Unit
)(
val after: (PreparedStatement) => Unit
) {
def apply()(implicit session: DBSession): Int = {
val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
session match {
case AutoSession =>
DB.autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
case NamedAutoSession(name, _) =>
NamedDB(name, session.settings).autoCommit(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
case ReadOnlyAutoSession =>
DB.readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
case ReadOnlyNamedAutoSession(name, _) =>
NamedDB(name, session.settings).readOnly(DBSessionWrapper(_, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*))
case _ =>
DBSessionWrapper(session, attributesSwitcher).updateWithFilters(before, after, statement, parameters: _*)
}
}
}
/**
* SQL which execute java.sql.Statement#execute().
*
* @param statement SQL template
* @param parameters parameters
* @param before before filter
* @param after after filter
*/
class SQLExecution(val statement: String, val parameters: Seq[Any], val tags: Seq[String] = Nil)(
val before: (PreparedStatement) => Unit
)(
val after: (PreparedStatement) => Unit
) {
def apply()(implicit session: DBSession): Boolean = {
val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
val f: DBSession => Boolean = DBSessionWrapper(_, attributesSwitcher).executeWithFilters(before, after, statement, parameters: _*)
// format: OFF
session match {
case AutoSession => DB.autoCommit(f)
case NamedAutoSession(name, _) => NamedDB(name, session.settings).autoCommit(f)
case ReadOnlyAutoSession => DB.readOnly(f)
case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
case _ => f(session)
}
// format: ON
}
}
/**
* SQL which execute java.sql.Statement#executeBatch().
*
* @param statement SQL template
* @param parameters parameters
*/
class SQLBatch(val statement: String, val parameters: Seq[Seq[Any]], val tags: Seq[String] = Nil) {
def apply[C[_]]()(implicit session: DBSession, cbf: CanBuildFrom[Nothing, Int, C[Int]]): C[Int] = {
val attributesSwitcher = new DBSessionAttributesSwitcher(SQL("").tags(tags: _*))
val f: DBSession => C[Int] = DBSessionWrapper(_, attributesSwitcher).batch(statement, parameters: _*)
// format: OFF
session match {
case AutoSession => DB.autoCommit(f)
case NamedAutoSession(name, _) => NamedDB(name, session.settings).autoCommit(f)
case ReadOnlyAutoSession => DB.readOnly(f)
case ReadOnlyNamedAutoSession(name, _) => NamedDB(name, session.settings).readOnly(f)
case _ => f(session)
}
// format: ON
}
}
按照JDBC-Engine的功能设计要求,我们大约把Update功能分成数据表构建操作DDL、批次运算Batch、和普通Update几种类型。我们是通过JDBCContext来定义具体的Update功能类型:
object JDBCContext {
type SQLTYPE = Int
val SQL_SELECT: Int = 0
val SQL_EXEDDL= 1
val SQL_UPDATE = 2
val RETURN_GENERATED_KEYVALUE = true
val RETURN_UPDATED_COUNT = false
}
case class JDBCContext(
dbName: Symbol,
statements: Seq[String] = Nil,
parameters: Seq[Seq[Any]] = Nil,
fetchSize: Int = 100,
queryTimeout: Option[Int] = None,
queryTags: Seq[String] = Nil,
sqlType: JDBCContext.SQLTYPE = JDBCContext.SQL_SELECT,
batch: Boolean = false,
returnGeneratedKey: Seq[Option[Any]] = Nil,
// no return: None, return by index: Some(1), by name: Some("id")
preAction: Option[PreparedStatement => Unit] = None,
postAction: Option[PreparedStatement => Unit] = None) {
ctx =>
//helper functions
def appendTag(tag: String): JDBCContext = ctx.copy(queryTags = ctx.queryTags :+ tag)
def appendTags(tags: Seq[String]): JDBCContext = ctx.copy(queryTags = ctx.queryTags ++ tags)
def setFetchSize(size: Int): JDBCContext = ctx.copy(fetchSize = size)
def setQueryTimeout(time: Option[Int]): JDBCContext = ctx.copy(queryTimeout = time)
def setPreAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
!ctx.batch && ctx.statements.size == 1)
ctx.copy(preAction = action)
else
throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
}
def setPostAction(action: Option[PreparedStatement => Unit]): JDBCContext = {
if (ctx.sqlType == JDBCContext.SQL_UPDATE &&
!ctx.batch && ctx.statements.size == 1)
ctx.copy(postAction = action)
else
throw new IllegalStateException("JDBCContex setting error: preAction not supported!")
}
def appendDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
if (ctx.sqlType == JDBCContext.SQL_EXEDDL) {
ctx.copy(
statements = ctx.statements ++ Seq(_statement),
parameters = ctx.parameters ++ Seq(Seq(_parameters))
)
} else
throw new IllegalStateException("JDBCContex setting error: option not supported!")
}
def appendUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
if (ctx.sqlType == JDBCContext.SQL_UPDATE && !ctx.batch) {
ctx.copy(
statements = ctx.statements ++ Seq(_statement),
parameters = ctx.parameters ++ Seq(_parameters),
returnGeneratedKey = ctx.returnGeneratedKey ++ (if (_returnGeneratedKey) Seq(Some(1)) else Seq(None))
)
} else
throw new IllegalStateException("JDBCContex setting error: option not supported!")
}
def appendBatchParameters(_parameters: Any*): JDBCContext = {
if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
throw new IllegalStateException("JDBCContex setting error: batch parameters only supported for SQL_UPDATE and batch = true!")
var matchParams = true
if (ctx.parameters != Nil)
if (ctx.parameters.head.size != _parameters.size)
matchParams = false
if (matchParams) {
ctx.copy(
parameters = ctx.parameters ++ Seq(_parameters)
)
} else
throw new IllegalStateException("JDBCContex setting error: batch command parameters not match!")
}
def setBatchReturnGeneratedKeyOption(returnKey: Boolean): JDBCContext = {
if (ctx.sqlType != JDBCContext.SQL_UPDATE || !ctx.batch)
throw new IllegalStateException("JDBCContex setting error: only supported in batch update commands!")
ctx.copy(
returnGeneratedKey = if (returnKey) Seq(Some(1)) else Nil
)
}
def setQueryCommand(_statement: String, _parameters: Any*): JDBCContext = {
ctx.copy(
statements = Seq(_statement),
parameters = Seq(_parameters),
sqlType = JDBCContext.SQL_SELECT,
batch = false
)
}
def setDDLCommand(_statement: String, _parameters: Any*): JDBCContext = {
ctx.copy(
statements = Seq(_statement),
parameters = Seq(_parameters),
sqlType = JDBCContext.SQL_EXEDDL,
batch = false
)
}
def setUpdateCommand(_returnGeneratedKey: Boolean, _statement: String, _parameters: Any*): JDBCContext = {
ctx.copy(
statements = Seq(_statement),
parameters = Seq(_parameters),
returnGeneratedKey = if (_returnGeneratedKey) Seq(Some(1)) else Seq(None),
sqlType = JDBCContext.SQL_UPDATE,
batch = false
)
}
def setBatchCommand(_statement: String): JDBCContext = {
ctx.copy (
statements = Seq(_statement),
sqlType = JDBCContext.SQL_UPDATE,
batch = true
)
}
}
JDBCContext还提供了不少的Helper函数来协助构建特别功能的JDBCContext对象,如:setQueryCommand, setDDLCommand, setUpdateCommand, setBatchCommand。这些Helper函数提供Update功能定义的几个主要元素包括:SQL语句主体包括参数占位的statement、输入参数parameter、是否需要返回系统自动产生的主键returnGeneratedKey。在ScalikeJDBC中所有类型的Update功能可以用下面几类内部函数实现,包括:
private[this] def batchInternal[C[_], A](
template: String,
paramsList: Seq[Seq[Any]],
execute: StatementExecutor => scala.Array[A]
)(implicit cbf: CanBuildFrom[Nothing, A, C[A]]): C[A] = {
ensureNotReadOnlySession(template)
paramsList match {
case Nil => Seq.empty[A].to[C]
case _ =>
using(createBatchStatementExecutor(
conn = conn,
template = template,
returnGeneratedKeys = false,
generatedKeyName = None
)) { executor =>
paramsList.foreach {
params =>
executor.bindParams(params)
executor.addBatch()
}
execute(executor).to[C]
}
}
}
private[this] def updateWithFiltersInternal[A](
returnGeneratedKeys: Boolean,
before: (PreparedStatement) => Unit,
after: (PreparedStatement) => Unit,
template: String,
execute: StatementExecutor => A,
params: Seq[Any]
): A = {
ensureNotReadOnlySession(template)
using(createStatementExecutor(
conn = conn,
template = template,
params = params,
returnGeneratedKeys = returnGeneratedKeys
)) {
executor =>
before(executor.underlying)
val count = execute(executor)
after(executor.underlying)
count
}
}
private[this] def updateWithAutoGeneratedKeyNameAndFiltersInternal[A](
returnGeneratedKeys: Boolean,
generatedKeyName: String,
before: (PreparedStatement) => Unit,
after: (PreparedStatement) => Unit,
template: String,
execute: StatementExecutor => A,
params: Seq[Any]
): A = {
ensureNotReadOnlySession(template)
using(createStatementExecutor(
conn = conn,
template = template,
params = params,
returnGeneratedKeys = returnGeneratedKeys,
generatedKeyName = Option(generatedKeyName)
)) {
executor =>
before(executor.underlying)
val count = execute(executor)
after(executor.underlying)
count
}
}
我们可以看到所有类型的Update都是通过构建StatementExecutor并按其属性进行运算来实现的:
/**
* java.sql.Statement Executor.
*
* @param underlying preparedStatement
* @param template SQL template
* @param singleParams parameters for single execution (= not batch execution)
* @param isBatch is batch flag
*/
case class StatementExecutor(
underlying: PreparedStatement,
template: String,
connectionAttributes: DBConnectionAttributes,
singleParams: Seq[Any] = Nil,
tags: Seq[String] = Nil,
isBatch: Boolean = false,
settingsProvider: SettingsProvider = SettingsProvider.default
) extends LogSupport with UnixTimeInMillisConverterImplicits with AutoCloseable {...}
这个StatementExcutor类的属性和我们的JDBCContext属性很接近。好了,回到JDBC-Engine Update功能定义。首先是DDL功能:
def jdbcExcuteDDL(ctx: JDBCContext): Try[String] = {
if (ctx.sqlType != SQL_EXEDDL) {
Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_EXEDDL‘!"))
}
else {
NamedDB(ctx.dbName) localTx { implicit session =>
Try {
ctx.statements.foreach { stm =>
val ddl = new SQLExecution(statement = stm, parameters = Nil)(
before = WrappedResultSet => {})(
after = WrappedResultSet => {})
ddl.apply()
}
"SQL_EXEDDL executed succesfully."
}
}
}
}
所有JDBC-Engine的Update功能都是一个事务处理Transaction中的多条更新语句。DDL语句不需要参数所以只需要提供statement就足够了。下面是这个函数的使用示范:
ConfigDBsWithEnv("dev").setup(‘h2)
ConfigDBsWithEnv("dev").loadGlobalSettings()
val dropSQL: String ="""
drop table members
"""
val createSQL: String ="""
create table members (
id serial not null primary key,
name varchar(30) not null,
description varchar(1000),
birthday date,
created_at timestamp not null,
picture blob
)"""
var ctx = JDBCContext(‘h2)
try {
ctx = ctx.setDDLCommand(dropSQL)
.appendDDLCommand(createSQL)
}
catch {
case e: Exception => println(e.getMessage)
}
val resultCreateTable = jdbcExcuteDDL(ctx)
resultCreateTable match {
case Success(msg) => println(msg)
case Failure(err) => println(s"${err.getMessage}")
}
在这里我们修改了上次使用的members表,增加了一个blob类的picture列。这个示范在一个完整的Transaction里包括了两条DDL语句。
批次更新batch-update是指多条输入参数在一条统一的statement上施用:
def jdbcBatchUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
if (ctx.statements == Nil)
throw new IllegalStateException("JDBCContex setting error: statements empty!")
if (ctx.sqlType != SQL_UPDATE) {
Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_UPDATE‘!"))
}
else {
if (ctx.batch) {
if (noReturnKey(ctx)) {
val usql = SQL(ctx.statements.head)
.tags(ctx.queryTags: _*)
.batch(ctx.parameters: _*)
Try {
NamedDB(ctx.dbName) localTx { implicit session =>
ctx.queryTimeout.foreach(session.queryTimeout(_))
usql.apply[Seq]()
Seq.empty[Long].to[C]
}
}
} else {
val usql = new SQLBatchWithGeneratedKey(ctx.statements.head, ctx.parameters, ctx.queryTags)(None)
Try {
NamedDB(ctx.dbName) localTx { implicit session =>
ctx.queryTimeout.foreach(session.queryTimeout(_))
usql.apply[C]()
}
}
}
} else {
Failure(new IllegalStateException("JDBCContex setting error: must set batch = true !"))
}
}
}
如果batch-update是某种Insert操作的话我们可以通过cox.batch注明返回由JDBC系统自动产生的唯一键。这些主键一般在构建表时注明,包括:serial, auto_increment等。如果不返回主键则返回update语句的更新状态如更新数据条数等。在上面这个函数里SQLBatchWithGeneratedKey.apply()返回insert数据主键,所以statement必须是INSERT语句。SQLBatch.apply()则用来运算update语句并返回更新数据的条数。下面是jdbcBatchUpdate函数的使用示范:
val insertSQL = "insert into members(name,birthday,description,created_at,picture) values (?, ?, ?, ?, ?)"
val dateCreated = DateTime.now
import java.io.FileInputStream
val picfile = new File("/users/tiger/Nobody.png")
val fis = new FileInputStream(picfile)
ctx = JDBCContext(‘h2)
try {
ctx = ctx.setBatchCommand(insertSQL).appendBatchParameters(
"John",new LocalDate("2008-03-01"),"youngest user",dateCreated,None).appendBatchParameters(
"peter", None, "no birth date", dateCreated, fis)
.appendBatchParameters(
"susan", None, "no birth date", dateCreated, None)
.setBatchReturnGeneratedKeyOption(JDBCContext.RETURN_GENERATED_KEYVALUE)
}
catch {
case e: Exception => println(e.getMessage)
}
var resultInserts = jdbcBatchUpdate(ctx)
resultInserts match {
case Success(msg) => println(msg)
case Failure(err) => println(s"${err.getMessage}")
}
上面这个例子里一个transaction批次包含了三条Insert语句,其中一条涉及存入picture字段:我们只需要把图像文件InputStream作为普通参数传人即可。我们也可以把任何类型的非batch-update语句捆绑在统一的transaction里运算,而且可以指定每条update返回类型:自动产生的主键或者更新数据条数:
def jdbcTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
if (ctx.statements == Nil)
throw new IllegalStateException("JDBCContex setting error: statements empty!")
if (ctx.sqlType != SQL_UPDATE) {
Failure(new IllegalStateException("JDBCContex setting error: sqlType must be ‘SQL_UPDATE‘!"))
}
else {
if (!ctx.batch) {
if (ctx.statements.size == 1)
singleTxUpdate(ctx)
else
multiTxUpdates(ctx)
} else
Failure(new IllegalStateException("JDBCContex setting error: must set batch = false !"))
}
}
这个update函数又被细分为单条语句singleTxUpdate和多条语句multiTxUpdates。无论单条或多条update函数又被分为返回主键或更新状态类型的函数:
private def singleTxUpdateWithReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
val Some(key) :: xs = ctx.returnGeneratedKey
val params: Seq[Any] = ctx.parameters match {
case Nil => Nil
case p@_ => p.head
}
val usql = new SQLUpdateWithGeneratedKey(ctx.statements.head, params, ctx.queryTags)(key)
Try {
NamedDB(ctx.dbName) localTx { implicit session =>
session.fetchSize(ctx.fetchSize)
ctx.queryTimeout.foreach(session.queryTimeout(_))
val result = usql.apply()
Seq(result).to[C]
}
}
}
private def singleTxUpdateNoReturnKey[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
val params: Seq[Any] = ctx.parameters match {
case Nil => Nil
case p@_ => p.head
}
val before = ctx.preAction match {
case None => pstm: PreparedStatement => {}
case Some(f) => f
}
val after = ctx.postAction match {
case None => pstm: PreparedStatement => {}
case Some(f) => f
}
val usql = new SQLUpdate(ctx.statements.head,params,ctx.queryTags)(before)(after)
Try {
NamedDB(ctx.dbName) localTx {implicit session =>
session.fetchSize(ctx.fetchSize)
ctx.queryTimeout.foreach(session.queryTimeout(_))
val result = usql.apply()
Seq(result.toLong).to[C]
}
}
}
private def singleTxUpdate[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
if (noReturnKey(ctx))
singleTxUpdateNoReturnKey(ctx)
else
singleTxUpdateWithReturnKey(ctx)
}
private def noReturnKey(ctx: JDBCContext): Boolean = {
if (ctx.returnGeneratedKey != Nil) {
val k :: xs = ctx.returnGeneratedKey
k match {
case None => true
case Some(k) => false
}
} else true
}
def noActon: PreparedStatement=>Unit = pstm => {}
def multiTxUpdates[C[_] <: TraversableOnce[_]](ctx: JDBCContext)(
implicit cbf: CanBuildFrom[Nothing, Long, C[Long]]): Try[C[Long]] = {
Try {
NamedDB(ctx.dbName) localTx { implicit session =>
session.fetchSize(ctx.fetchSize)
ctx.queryTimeout.foreach(session.queryTimeout(_))
val keys: Seq[Option[Any]] = ctx.returnGeneratedKey match {
case Nil => Seq.fill(ctx.statements.size)(None)
case k@_ => k
}
val sqlcmd = ctx.statements zip ctx.parameters zip keys
val results = sqlcmd.map { case ((stm, param), key) =>
key match {
case None =>
new SQLUpdate(stm, param, Nil)(noActon)(noActon).apply().toLong
case Some(k) =>
new SQLUpdateWithGeneratedKey(stm, param, Nil)(k).apply().toLong
}
}
results.to[C]
}
}
}
下面是这个函数的使用示范:
val updateSQL = "update members set description = ? where id < ?"
ctx = JDBCContext(‘h2)
try {
ctx = ctx.setUpdateCommand(JDBCContext.RETURN_GENERATED_KEYVALUE,insertSQL,
"max", None, "no birth date", dateCreated, None)
.appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT, updateSQL, "id++", 10)
.appendUpdateCommand(JDBCContext.RETURN_UPDATED_COUNT,"delete members where id = 1")
}
catch {
case e: Exception => println(e.getMessage)
}
var resultUpdates = jdbcTxUpdates[Vector](ctx)
resultUpdates match {
case Success(msg) => println(msg)
case Failure(err) => println(s"${err.getMessage}")
}
在这个例子里我们把insert,update和delete混在了一个transaction里。最后,我们再把试验数据,包括blob字段读出来:
//data model
case class Member(
id: Long,
name: String,
description: Option[String] = None,
birthday: Option[LocalDate] = None,
createdAt: DateTime,
picture: InputStream)
//data row converter
val toMember = (rs: WrappedResultSet) => Member(
id = rs.long("id"),
name = rs.string("name"),
description = rs.stringOpt("description"),
birthday = rs.jodaLocalDateOpt("birthday"),
createdAt = rs.jodaDateTime("created_at"),
picture = rs.binaryStream("picture")
)
ctx = JDBCContext(‘h2)
ctx = ctx.setQueryCommand("select * from members").setQueryTimeout(Some(1000))
val vecMember: Vector[Member] = jdbcQueryResult[Vector,Member](ctx,toMember)
val buffer = new Array[Byte](1024)
vecMember.foreach {row =>
println(s"id: ${row.id} name: ${row.name}")
println(s"name: ${row.name}")
if (row.picture == null)
println("picture empty")
else {
val fname = s"/users/tiger/pic${row.id}.png"
val file = new File(fname)
val output = new FileOutputStream(file)
println(s"saving picture to $fname")
row.picture.available()
while (row.picture.read(buffer) > 0) {
output.write(buffer)
}
output.close()
}
}
下面是本次讨论的示范源代码:
build.sbt
name := "learn-scalikeJDBC"
version := "0.1"
scalaVersion := "2.12.4"
// Scala 2.10, 2.11, 2.12
libraryDependencies ++= Seq(
"org.scalikejdbc" %% "scalikejdbc" % "3.1.0",
"org.scalikejdbc" %% "scalikejdbc-test" % "3.1.0" % "test",
"org.scalikejdbc" %% "scalikejdbc-config" % "3.1.0",
"com.h2database" % "h2" % "1.4.196",
"mysql" % "mysql-connector-java" % "6.0.6",
"org.postgresql" % "postgresql" % "42.2.0",
"commons-dbcp" % "commons-dbcp" % "1.4",
"org.apache.tomcat" % "tomcat-jdbc" % "9.0.2",
"com.zaxxer" % "HikariCP" % "2.7.4",
"com.jolbox" % "bonecp" % "0.8.0.RELEASE",
"com.typesafe.slick" %% "slick" % "3.2.1",
"ch.qos.logback" % "logback-classic" % "1.2.3"
)
resources/application.conf
# JDBC settings
test {
db {
h2 {
driver = "org.h2.Driver"
url = "jdbc:h2:tcp://localhost/~/slickdemo"
user = ""
password = ""
poolInitialSize = 5
poolMaxSize = 7
poolConnectionTimeoutMillis = 1000
poolValidationQuery = "select 1 as one"
poolFactoryName = "commons-dbcp2"
}
}
db.mysql.driver = "com.mysql.cj.jdbc.Driver"
db.mysql.url = "jdbc:mysql://localhost:3306/testdb"
db.mysql.user = "root"
db.mysql.password = "123"
db.mysql.poolInitialSize = 5
db.mysql.poolMaxSize = 7
db.mysql.poolConnectionTimeoutMillis = 1000
db.mysql.poolValidationQuery = "select 1 as one"
db.mysql.poolFactoryName = "bonecp"
# scallikejdbc Global settings
scalikejdbc.global.loggingSQLAndTime.enabled = true
scalikejdbc.global.loggingSQLAndTime.logLevel = info
scalikejdbc.global.loggingSQLAndTime.warningEnabled = true
scalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000
scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warn
scalikejdbc.global.loggingSQLAndTime.singleLineMode = false
scalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = false
scalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
}
dev {
db {
h2 {
driver = "org.h2.Driver"
url = "jdbc:h2:tcp://localhost/~/slickdemo"
user = ""
password = ""
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections = 12
minConnections = 4
keepAliveConnection = true
}
mysql {
driver = "com.mysql.cj.jdbc.Driver"
url = "jdbc:mysql://localhost:3306/testdb"
user = "root"
password = "123"
poolInitialSize = 5
poolMaxSize = 7
poolConnectionTimeoutMillis = 1000
poolValidationQuery = "select 1 as one"
poolFactoryName = "bonecp"
}
postgres {
driver = "org.postgresql.Driver"
url = "jdbc:postgresql://localhost:5432/testdb"
user = "root"
password = "123"
poolFactoryName = "hikaricp"
numThreads = 10
maxConnections