时间:2021-07-01 10:21:17 帮助过:17人阅读
三、 索引的两大类型hash与btree
#我们可以在创建上述索引的时候,为其指定索引类型,分两类 hash类型的索引:查询单条快,范围查询慢 btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它) #不同的存储引擎支持的索引类型也不一样 InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引; Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引; NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引; Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
四、创建/删除索引的语法
#创建/删除索引的语法格式 #方法一:创建表时 CREATE TABLE 表名 ( 字段名1 数据类型 [完整性约束条件…], 字段名2 数据类型 [完整性约束条件…], [UNIQUE | FULLTEXT | SPATIAL ] INDEX | KEY [索引名] (字段名[(长度)] [ASC |DESC]) ); #方法二:CREATE在已存在的表上创建索引 CREATE [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 ON 表名 (字段名[(长度)] [ASC |DESC]) ; #方法三:ALTER TABLE在已存在的表上创建索引 ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL ] INDEX 索引名 (字段名[(长度)] [ASC |DESC]) ; #删除索引:DROP INDEX 索引名 ON 表名字;
善用帮助文档 help create help create index ================== 1.创建索引 -在创建表时就创建(需要注意的几点) create table s1( id int ,#可以在这加primary key #id int index #不可以这样加索引,因为index只是索引,没有约束一说, #不能像主键,还有唯一约束一样,在定义字段的时候加索引 name char(20), age int, email varchar(30) #primary key(id) #也可以在这加 index(id) #可以这样加 ); -在创建表后在创建 create index name on s1(name); #添加普通索引 create unique age on s1(age);添加唯一索引 alter table s1 add primary key(id); #添加住建索引,也就是给id字段增加一个主键约束 create index name on s1(id,name); #添加普通联合索引 2.删除索引 drop index id on s1; drop index name on s1; #删除普通索引 drop index age on s1; #删除唯一索引,就和普通索引一样,不用在index前加unique来删,直接就可以删了 alter table s1 drop primary key; #删除主键(因为它添加的时候是按照alter来增加的,那么我们也用alter来删)
帮助查看
五、测试索引
1、准备
#1. 准备表 create table s1( id int, name varchar(20), gender char(6), email varchar(50) ); #2. 创建存储过程,实现批量插入记录 delimiter $$ #声明存储过程的结束符号为$$ create procedure auto_insert1() BEGIN declare i int default 1; while(i<3000000)do insert into s1 values(i,concat(‘egon‘,i),‘male‘,concat(‘egon‘,i,‘@oldboy‘)); set i=i+1; end while; END$$ #$$结束 delimiter ; #重新声明分号为结束符号 #3. 查看存储过程 show create procedure auto_insert1\G #4. 调用存储过程 call auto_insert1();
2 、在没有索引的前提下测试查询速度
#无索引:从头到尾扫描一遍,所以查询速度很慢 mysql> select * from s1 where id=333; +------+---------+--------+----------------+ | id | name | gender | email | +------+---------+--------+----------------+ | 333 | egon333 | male | 333@oldboy.com | | 333 | egon333 | f | alex333@oldboy | | 333 | egon333 | f | alex333@oldboy | +------+---------+--------+----------------+ rows in set (0.32 sec) mysql> select * from s1 where email=‘egon333@oldboy‘; .... ... rows in set (0.36 sec)
3、 加上索引
#1. 一定是为搜索条件的字段创建索引,比如select * from t1 where age > 5;就需要为age加上索引 #2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快 比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。 建完以后,再查询就会很快了 #3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI
六、正确使用索引
一、覆盖索引
#分析 select * from s1 where id=123; 该sql命中了索引,但未覆盖索引。 利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。 但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,
还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,
就减去了这份苦恼,如下 select id from s1 where id=123; 这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快
二、联合索引
三、索引合并
#索引合并:把多个单列索引合并使用 #分析: 组合索引能做到的事情,我们都可以用索引合并去解决,比如 create index ne on s1(name,email);#组合索引 我们完全可以单独为name和email创建索引 组合索引可以命中: select * from s1 where name=‘egon‘ ; select * from s1 where name=‘egon‘ and email=‘adf‘; 索引合并可以命中: select * from s1 where name=‘egon‘ ; select * from s1 where email=‘adf‘; select * from s1 where name=‘egon‘ and email=‘adf‘; 乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name=‘egon‘ and email=‘adf‘,
那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理
三 若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下原则
#1.最左前缀匹配原则,非常重要的原则, create index ix_name_email on s1(name,email,) - 最左前缀匹配:必须按照从左到右的顺序匹配 select * from s1 where name=‘egon‘; #可以 select * from s1 where name=‘egon‘ and email=‘asdf‘; #可以 select * from s1 where email=‘alex@oldboy.com‘; #不可以 mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,
比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,
d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。 #2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器
会帮你优化成索引可以识别的形式 #3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),
表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、
性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,
这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录 #4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’
就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,
但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。
所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
最左前缀示范
mysql> select * from s1 where id>3 and name=‘egon‘ and email=‘alex333@oldboy.com‘ and gender=‘male‘; Empty set (0.39 sec) mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀 Query OK, 0 rows affected (15.27 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name=‘egon‘ and email=‘alex333@oldboy.com‘ and gender=‘male‘; Empty set (0.43 sec) mysql> drop index idx on s1; Query OK, 0 rows affected (0.16 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀 Query OK, 0 rows affected (15.97 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select * from s1 where id>3 and name=‘egon‘ and email=‘alex333@oldboy.com‘ and gender=‘male‘; Empty set (0.03 sec)
#建联合索引,最左匹配 6. 最左前缀匹配 index(id,age,email,name) #条件中一定要出现id(只要出现id就会提升速度) id id age id email id name email #不行 如果单独这个开头就不能提升速度了 mysql> select count(*) from s1 where id=3000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.11 sec) mysql> create index xxx on s1(id,name,age,email); Query OK, 0 rows affected (6.44 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> select count(*) from s1 where id=3000; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.00 sec) mysql> select count(*) from s1 where name=‘egon‘; +----------+ | count(*) | +----------+ | 299999 | +----------+ 1 row in set (0.16 sec) mysql> select count(*) from s1 where email=‘egon3333@oldboy.com‘; +----------+ | count(*) | +----------+ | 1 | +----------+ 1 row in set (0.15 sec) mysql> select count(*) from s1 where id=1000 and email=‘egon3333@oldboy.com‘; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec) mysql> select count(*) from s1 where email=‘egon3333@oldboy.com‘ and id=3000; +----------+ | count(*) | +----------+ | 0 | +----------+ 1 row in set (0.00 sec)索引无法命中的情况需要注意:
- like ‘%xx‘ select * from tb1 where email like ‘%cn‘; - 使用函数 select * from tb1 where reverse(email) = ‘wupeiqi‘; - or select * from tb1 where nid = 1 or name = ‘seven@live.com‘; 特别的:当or条件中有未建立索引的列才失效,以下会走索引 select * from tb1 where nid = 1 or name = ‘seven‘; select * from tb1 where nid = 1 or name = ‘seven@live.com‘ and email = ‘alex‘ - 类型不一致 如果列是字符串类型,传入条件是必须用引号引起来,不然... select * from tb1 where email = 999; 普通索引的不等于不会走索引 - != select * from tb1 where email != ‘alex‘ 特别的:如果是主键,则还是会走索引 select * from tb1 where nid != 123 - > select * from tb1 where email > ‘alex‘ 特别的:如果是主键或索引是整数类型,则还是会走索引 select * from tb1 where nid > 123 select * from tb1 where num > 123 #排序条件为索引,则select字段必须也是索引字段,否则无法命中 - order by select name from s1 order by email desc; 当根据索引排序时候,select查询的字段如果不是索引,则不走索引 select email from s1 order by email desc; 特别的:如果对主键排序,则还是走索引: select * from tb1 order by nid desc; - 组合索引最左前缀 如果组合索引为:(name,email) name and email -- 使用索引 name -- 使用索引 email -- 不使用索引 - count(1)或count(列)代替count(*)在mysql中没有差别了 - create index xxxx on tb(title(19)) #text类型,必须制定长度
- 避免使用select * - count(1)或count(列) 代替 count(*) - 创建表时尽量时 char 代替 varchar - 表的字段顺序固定长度的字段优先 - 组合索引代替多个单列索引(经常使用多个条件查询时) - 尽量使用短索引 - 使用连接(JOIN)来代替子查询(Sub-Queries) - 连表时注意条件类型需一致 - 索引散列值(重复少)不适合建索引,例:性别不适合
七、慢查询优化的基本步骤
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE 1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高 2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询) 3.order by limit 形式的sql语句让排序的表优先查 4.了解业务方使用场景 5.加索引时参照建索引的几大原则 6.观察结果,不符合预期继续从0分析
MySQL数据库学习【第九篇】索引原理与慢查询优化
标签:适合 最小 命中 使用 去哪里 比例 索引 desc 执行计划