当前位置:Gxlcms > 数据库问题 > 【转】MySQL— pymysql and SQLAlchemy

【转】MySQL— pymysql and SQLAlchemy

时间:2021-07-01 10:21:17 帮助过:11人阅读

2. 使用操作

a. 执行SQL

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
# 创建连接
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
# 创建游标
cursor = conn.cursor()
  
# 执行SQL,并返回受影响行数
effect_row = cursor.execute("update hosts set host = ‘1.1.1.2‘")
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = ‘1.1.1.2‘ where nid > %s", (1,))
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
  
  
# 提交,不然无法保存新建或者修改的数据
conn.commit()
  
# 关闭游标
cursor.close()
# 关闭连接
conn.close()

b. 获取新创建数据自增ID

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()

# 获取最新自增ID
new_id = cursor.lastrowid

cursor.close()
conn.close()

c. 获取查询数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
cursor = conn.cursor()
cursor.execute("select * from hosts")
  
# 获取第一行数据
row_1 = cursor.fetchone()
  
# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()
  
conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode=‘relative‘)     # 相对当前位置移动
  • cursor.scroll(2,mode=‘absolute‘)   # 相对绝对位置移动

d. fetch数据类型

关于默认获取的数据是元组类型,如果想要获得字典类型的数据,即:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host=127.0.0.1, port=3306, user=root, passwd=123, db=t1)
  
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()

二、SQLAlchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

1. 下载安装

#在终端直接运行
pip3 install SQLAlchemy

2. SQLAlchemy依赖关系

SQLAlchemy本身无法操作数据库,其必须依赖pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作。 技术分享图片

 

 

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html

3. ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。 a. 创建表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

#表明依赖关系并创建连接,最大连接数为5 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 创建单表
class Users(Base):
    __tablename__ = users    # 表名
    id = Column(Integer, primary_key=True,autoincrement=True)    # id列,主键自增
    name = Column(String(32))    # name列
    extra = Column(String(16))    # extra列
 
    __table_args__ = (
    UniqueConstraint(id, name, name=uix_id_name),    # 创建联合唯一索引
        Index(ix_id_name, name, extra),    # 创建普通索引
    )
 
 
# 一对多
class Favor(Base):
    __tablename__ = favor
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=red, unique=True)
 
 
class Person(Base):
    __tablename__ = person
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))    # 创建外键
 
 
# 多对多
class Group(Base):
    __tablename__ = group
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 
class Server(Base):
    __tablename__ = server
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = servertogroup
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(server.id))    # 创建外键
    group_id = Column(Integer, ForeignKey(group.id))    # 创建外键
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)

注:设置外键的另一种方式 ForeignKeyConstraint([‘other_id‘], [‘othertable.other_id‘])

b. 操作表   技术分享图片
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 创建单表
class Users(Base):
    __tablename__ = users
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(id, name, name=uix_id_name),
        Index(ix_id_name, name, extra),
    )

    def __repr__(self):
        return "%s-%s" %(self.id, self.name)

# 一对多
class Favor(Base):
    __tablename__ = favor
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=red, unique=True)

    def __repr__(self):
        return "%s-%s" %(self.nid, self.caption)

class Person(Base):
    __tablename__ = person
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
    # 与生成表结构无关,仅用于查询方便
    favor = relationship("Favor", backref=pers)

# 多对多
class ServerToGroup(Base):
    __tablename__ = servertogroup
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(server.id))
    group_id = Column(Integer, ForeignKey(group.id))
    group = relationship("Group", backref=s2g)
    server = relationship("Server", backref=s2g)

class Group(Base):
    __tablename__ = group
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
    # group = relationship(‘Group‘,secondary=ServerToGroup,backref=‘host_list‘)

class Server(Base):
    __tablename__ = server

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)

def init_db():
    Base.metadata.create_all(engine)

def drop_db():
    Base.metadata.drop_all(engine)

Session = sessionmaker(bind=engine)
session = Session()
表结构 + 数据库连接

b.1 增

#单条增加
obj = Users(name="alex0", extra=sb)
session.add(obj)

#多条增加
session.add_all([
    Users(name="alex1", extra=sb),
    Users(name="alex2", extra=sb),
])

#提交
session.commit()

 

b.2 删

#先查询到要删除的记录,再delete
session.query(Users).filter(Users.id > 2).delete()
session.commit()

 

b.3 改

#先查询,再更新
session.query(Users).filter(Users.id > 2).update({"name" : "099"})    # 直接更改
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)    # 字符串拼接
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")    # 数字相加
session.commit()

 

b.4 查

 

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name=alex).all()
ret = session.query(Users).filter_by(name=alex).first()

ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name=fred).order_by(User.id).all()

ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name=ed).all()

 

b.5 其它

 

# 条件
ret = session.query(Users).filter_by(name=alex).all()    # 条件内为关键字表达式
ret = session.query(Users).filter(Users.id > 1, Users.name == eric).all()    # 条件内为SQL表达式
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == eric).all()    # between
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()    # in
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()    # not in
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=eric))).all()    # 子查询条件

from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == eric)).all()    # and
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == eric)).all()    # or
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == eric, Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like(e%)).all()    # e开头
ret = session.query(Users).filter(~Users.name.like(e%)).all()    # 非e开头

# 限制
ret = session.query(Users)[1:2]    # 相当于limit

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分组
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 连表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()    # 笛卡儿积连表
ret = session.query(Person).join(Favor).all()    # 默认内连 inner join
ret = session.query(Person).join(Favor, isouter=True).all()    # 左连


# 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

 

 

 

参考资料:

1. Python开发【第十九篇】:Python操作MySQL

 

【转】MySQL— pymysql and SQLAlchemy

标签:server   映射   pre   expr   根据   语言   obj   sub   hid   

人气教程排行