其它环境下的安装请参考MariaDB官网关于下载安装的文档。
导入示例数据
与前文一样,我们使用Employees Sample Database,作为示例数据库。完整示例数据库的下载地址为:https://launchpad.net/test-db/employees-db-1/1.0.6/+download/employees_db-full-1.0.6.tar.bz2。
将下载的压缩包解压后,会看到一系列的文件,其中employees.sql就是导入数据的命令文件。执行
- mysql -h[host] -u[user] -p < employees.sql
就可以完成建库、建表和load数据等一系列操作。此时数据库中会多一个叫做employees的数据库。库中的表如下:
- MariaDB [employees]> SHOW TABLES;
- +---------------------+
- | Tables_in_employees |
- +---------------------+
- | departments |
- | dept_emp |
- | dept_manager |
- | employees |
- | salaries |
- | titles |
- +---------------------+
- 6 rows in set (0.00 sec)
我们将使用employees表做实验。
建立联合索引
employees表包含雇员的基本信息,表结构如下:
- MariaDB [employees]> DESC employees.employees;
- +------------+---------------+------+-----+---------+-------+
- | Field | Type | Null | Key | Default | Extra |
- +------------+---------------+------+-----+---------+-------+
- | emp_no | int(11) | NO | PRI | NULL | |
- | birth_date | date | NO | | NULL | |
- | first_name | varchar(14) | NO | | NULL | |
- | last_name | varchar(16) | NO | | NULL | |
- | gender | enum(‘M‘,‘F‘) | NO | | NULL | |
- | hire_date | date | NO | | NULL | |
- +------------+---------------+------+-----+---------+-------+
- 6 rows in set (0.01 sec)
这个表默认只有一个主索引,因为ICP只能作用于二级索引,所以我们建立一个二级索引:
- ALTER TABLE employees.employees ADD INDEX first_name_last_name (first_name, last_name);
这样就建立了一个first_name和last_name的联合索引。
查询
为了明确看到查询性能,我们启用profiling并关闭query cache:
- SET profiling = 1;
- SET query_cache_type = 0;
- SET GLOBAL query_cache_size = 0;
然后我们看下面这个查询:
- MariaDB [employees]> SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘;
- +--------+------------+------------+-----------+--------+------------+
- | emp_no | birth_date | first_name | last_name | gender | hire_date |
- +--------+------------+------------+-----------+--------+------------+
- | 254642 | 1959-01-17 | Mary | Botman | M | 1989-11-24 |
- | 471495 | 1960-09-24 | Mary | Dymetman | M | 1988-06-09 |
- | 211941 | 1962-08-11 | Mary | Hofman | M | 1993-12-30 |
- | 217707 | 1962-09-05 | Mary | Lichtman | F | 1987-11-20 |
- | 486361 | 1957-10-15 | Mary | Oberman | M | 1988-09-06 |
- | 457469 | 1959-07-15 | Mary | Weedman | M | 1996-11-21 |
- +--------+------------+------------+-----------+--------+------------+
根据MySQL索引的前缀匹配原则,两者对索引的使用是一致的,即只有first_name采用索引,last_name由于使用了模糊前缀,没法使用索引进行匹配。我将查询联系执行三次,结果如下:
- +----------+------------+---------------------------------------------------------------------------+
- | Query_ID | Duration | Query |
- +----------+------------+---------------------------------------------------------------------------+
- | 38 | 0.00084400 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- | 39 | 0.00071800 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- | 40 | 0.00089600 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- +----------+------------+---------------------------------------------------------------------------+
然后我们关闭ICP:
- SET optimizer_switch=‘index_condition_pushdown=off‘;
在运行三次相同的查询,结果如下:
- +----------+------------+---------------------------------------------------------------------------+
- | Query_ID | Duration | Query |
- +----------+------------+---------------------------------------------------------------------------+
- | 42 | 0.00264400 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- | 43 | 0.01418900 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- | 44 | 0.00234200 | SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘ |
- +----------+------------+---------------------------------------------------------------------------+
有意思的事情发生了,关闭ICP后,同样的查询,耗时是之前的三倍以上。下面我们用explain看看两者有什么区别:
- MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘;
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
- | 1 | SIMPLE | employees | ref | first_name_last_name | first_name_last_name | 44 | const | 224 | Using index condition |
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-----------------------+
- 1 row in set (0.00 sec)
- MariaDB [employees]> EXPLAIN SELECT * FROM employees WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘;
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
- | 1 | SIMPLE | employees | ref | first_name_last_name | first_name_last_name | 44 | const | 224 | Using where |
- +------+-------------+-----------+------+----------------------+----------------------+---------+-------+------+-------------+
- 1 row in set (0.00 sec)
前者是开启ICP,后者是关闭ICP。可以看到区别在于Extra,开启ICP时,用的是Using index condition;关闭ICP时,是Using where。
其中Using index condition就是ICP提高查询性能的关键。下一节说明ICP提高查询性能的原理。
root@localhost:3306.sock [employees]> EXPLAIN format=json SELECT * FROM employees
-> WHERE first_name=‘Mary‘ AND last_name LIKE ‘%man‘\G;
*************************** 1. row ***************************
EXPLAIN: {
"query_block": {
"select_id": 1,
"cost_info": {
"query_cost": "268.80"
},
"table": {
"table_name": "employees",
"access_type": "ref",
"possible_keys": [
"first_name_last_name"
],
"key": "first_name_last_name",
"used_key_parts": [
"first_name"
],
"key_length": "58",
"ref": [
"const"
],
"rows_examined_per_scan": 224,
"rows_produced_per_join": 24,
"filtered": "11.11",
"index_condition": "(employees.employees.last_name like ‘%man‘)",
"cost_info": {
"read_cost": "224.00",
"eval_cost": "4.98",
"prefix_cost": "268.80",
"data_read_per_join": "3K"
},
"used_columns": [
"emp_no",
"birth_date",
"first_name",
"last_name",
"gender",
"hire_date"
]
}
}
}
1 row in set, 1 warning (0.00 sec)
原理
ICP的原理简单说来就是将可以利用索引筛选的where条件在存储引擎一侧进行筛选,而不是将所有index access的结果取出放在server端进行where筛选。
以上面的查询为例,在没有ICP时,首先通过索引前缀从存储引擎中读出224条first_name为Mary的记录,然后在server段用where筛选last_name的like条件;而启用ICP后,由于last_name的like筛选可以通过索引字段进行,那么存储引擎内部通过索引与where条件的对比来筛选掉不符合where条件的记录,这个过程不需要读出整条记录,同时只返回给server筛选后的6条记录,因此提高了查询性能。
下面通过图两种查询的原理详细解释。
关闭ICP
在不支持ICP的系统下,索引仅仅作为data access使用。
开启ICP
在ICP优化开启时,在存储引擎端首先用索引过滤可以过滤的where条件,然后再用索引做data access,被index condition过滤掉的数据不必读取,也不会返回server端。
注意事项
有几个关于ICP的事情要注意:
- ICP只能用于二级索引,不能用于主索引。
- 也不是全部where条件都可以用ICP筛选,如果某where条件的字段不在索引中,当然还是要读取整条记录做筛选,在这种情况下,仍然要到server端做where筛选。
- ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
参考
[1] https://mariadb.com/kb/en/index-condition-pushdown/
[2] http://dev.mysql.com/doc/refman/5.6/en/index-condition-pushdown-optimization.html
MySQL索引与Index Condition Pushdown
标签:过程 line cond serve block nbsp lin 数据库 html