,‘20190502120000‘,‘2‘,‘522131199901016667‘);
表3 车票表
create table tickets(
ticket_id varchar(18) primary key,
train_number varchar(10) not null,
start_station char(11) not null,
arrive_station varchar(16) not null,
seat_type varchar(18) not null,
price varchar(18),
go_time timestamp,
arrive_time timestamp,
type varchar(18),
order_number varchar(18)
);
insert into tickets values(‘ticket201904200001‘,‘Z49‘,‘上海‘,‘杭州‘,‘硬座‘,‘20.00‘,‘2019-04-20 21:01:00‘,‘2019-04-20 22:00:00‘,‘成人票‘,‘201904200001‘);
insert into tickets values(‘ticket201904200002‘,‘Z50‘,‘嘉兴‘,‘杭州‘,‘硬座‘,‘10.00‘,‘2019-04-02 21:00:00‘,‘2019-04-02 22:00:00‘,‘成人票‘,‘201904020001‘);
insert into tickets values(‘ticket201904200003‘,‘Z50‘,‘上海‘,‘南京‘,‘硬座‘,‘10.00‘,‘2019-04-02 21:00:00‘,‘2019-04-02 22:00:00‘,‘成人票‘,‘201904020004‘);
insert into tickets values(‘ticket201904200004‘,‘Z50‘,‘上海‘,‘杭州‘,‘硬卧‘,‘10.00‘,‘2019-04-02 21:00:00‘,‘2019-04-02 22:00:00‘,‘成人票‘,‘201904020005‘);
insert into tickets values(‘ticket201904200005‘,‘G11‘,‘上海‘,‘武汉‘,‘硬座‘,‘10.00‘,‘2019-04-02 21:00:00‘,‘2019-04-02 22:00:00‘,‘成人票‘,‘201904020001‘);
三、具体查询需求分析:
日期处理:arrive_time只需要日期+时分。
建表的时候有五种:
https://www.cnblogs.com/Jie-Jack/p/3793304.html
查询的时候:
需要格式化,DATE_FORMAT(tickets.arrive_time,‘%Y%m%d %H:%i:%s‘
select date_format(order_time,‘%Y-%m-%d %H:%m‘) order_time from orders;
主要是车票表的查询:
(1)需求:查询所有从上海出发到杭州的火车的车次,起点,终点站,席位,价格,出发时间
select train_number as 车次,
start_station as 起点,
arrive_station as 终点,
seat_type as 席位,
price as 价格,
date_format(go_time,‘%Y-%m-%d %H:%m‘) 出发时间
from tickets
where start_station = ‘上海‘
and
arrive_station = ‘杭州‘;
![技术图片](https://img.gxlcms.com//Uploads-s/new/2020-10-11-qlqqti/20190420214656092385.png)
type字段显示为All,没有用到索引。
(2)优化:为了加快查找速度,给始发站和终点站添加复合索引
alter table tickets add index idx_start_arrive(start_station,arrive_station);
![技术图片](http://www.mamicode.com/file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(10).png)
![技术图片](http://www.mamicode.com/)
type字段为ref,性能优化较好。
表结构参考了:
http://www.mayiwenku.com/p-5808164.html
火车票订票系统的数据库设计与实现(某某乐后端实习面试题)
标签:jdb dba 客户 round owa www. okr ted gas