当前位置:Gxlcms > 数据库问题 > MySQL索引(二)B+树在磁盘中的存储

MySQL索引(二)B+树在磁盘中的存储

时间:2021-07-01 10:21:17 帮助过:13人阅读

 

技术图片图2-0 表数据

 

2.1 聚集索引(Clustered index )

每个InnoDB表都有一个称为聚集索引的特殊索引,该索引是按照表的主键构造的一棵B+树。

根据示例数据构建如图2-1所示聚集索引:

 

技术图片? 图2-1 B+树聚集索引

 

2.1.1 知识点

  • 叶子节点存放了整张表的所有行数据。
  • 非叶子节点并不存储行数据,是为了能存储更多索引键,从而降低B+树的高度,进而减少IO次数。
  • 聚集索引的存储在物理上并不是连续的,每个数据页在不同的磁盘块,通过一个双向链表来进行连接。

2.1.2 查找:假设要查找数据项6

  1. 把根节点由磁盘块0加载到内存,发生一次IO,在内存中用二分查找确定6在3和9之间;
  2. 通过指针P2的磁盘地址,将磁盘2加载到内存,发生第二次IO,再在内存中进行二分查找找到6,结束。

这里只进行了两次IO,实际上,每个磁盘块大小为4K,3层的B+树可以表示上百万的数据,也就是每次查找只需要3次IO,所以索引对性能的提高将是巨大的。

 

技术图片?

 

2.1.3 怎样选择聚集索引

每张InnoDB表有且只有一个聚集索引,那它是怎么选择索引的呢?

  • 一般情况,用PRIMARY KEY来作为聚集索引。
  • 如果没有定义PRIMARY KEY,将会用第一个UNIQUENOT NULL的列来作为聚集索引。
  • 如果表没有合适的UNIQUE索引,会内部根据行ID值生成一个隐藏的聚簇索引GEN_CLUST_INDEX

所以在建表的时候,如果没有逻辑唯一且非空列时,可以添加一个auto_increment的列,方便建立一个聚集索引。

2.2 非聚集索引(Secondary indexes)

非聚集索引又叫辅助索引,叶子节点并不包含行记录数据,而是存储了聚集索引键。

根据示例数据(idx_name索引)构建如图2-2所示辅助索引:

 

技术图片? 图2-2 B+树非聚集索引

 

2.2.1 知识点

  • 每个表可以有多个辅助索引
  • 通过辅助索引查数据时,先查找辅助索引获得聚集索引的主键,然后通过主键索引来查找完整的行记录。
  • 通过非主键索引比主键索引查找速度要慢一倍。

2.2.2 查找:获取NAME=Jake的数据

第一阶段:通过辅助索引查到主键索引的主键

  1. 把idx_name索引的根节点由磁盘块0加载到内存,发生一次IO,查找到在P2指针中
  2. 根据P2指针的磁盘地址,加载磁盘块2到内存,发生第二次IO,查找到Jake节点以及它的主键索引9

第二阶段:通过主键索引找到完整的行记录

  1. 把根节点由磁盘块0加载到内存,发生一次IO,在内存中用二分查找确定9在P3指针中
  2. 通过指针P3的磁盘地址,将磁盘3加载到内存,发生第二次IO,再在内存中进行二分查找找到9,以及它的行记录,

查找结束。


未完待续…

原文链接:MySQL索引(二)B+树在磁盘中的存储 - 掘金  https://juejin.im/post/5cef2c43e51d45572c05ffe3

MySQL索引(二)B+树在磁盘中的存储

标签:维护   技术   target   second   节点   文件中   地址   lin   指针   

人气教程排行