时间:2021-07-01 10:21:17 帮助过:27人阅读
在老的版本中,SparkSQL提供两种SQL查询起始点,一个叫SQLContext,用于Spark自己提供的SQL查询,一个叫HiveContext,用于连接Hive的查询,SparkSession是Spark最新的SQL查询起始点,实质上是SQLCotext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的
import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("Spark SQL basic example") .config("spark.some.config.option", "some-value") .getOrCreate() // For implicit conversions like converting RDDs to DataFrames import spark.implicits._
SparkSession.builder用于创建一个SparkSession
import spark.implicits._的引入是用于将DataFrame隐式转换成RDD,使df能够使用RDD中的方法
如果需要Hive支持,则需要以下创建语句:
import org.apache.spark.sql.SparkSession val spark = SparkSession .builder() .appName("Spark SQL basic example") .config("spark.some.config.option", "some-value") .enableHiveSupport() .getOrCreate() // For implicit conversions like converting RDDs to DataFrames import spark.implicits._
在Spark SQL中SparkSession是创建DataFrames和执行SQL的入口,创建DataFrames有三种方式,一种是可以从一个存在的RDD进行转换,还可以从Hive Table进行查询返回,或者通过Spark的数据源进行创建
从Spark数据源进行创建:
val df = spark.read.json("examples/src/main/resources/people.json") // Displays the content of the DataFrame to stdout df.show() // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+
从RDD进行转换:
/** Michael, 29 Andy, 30 Justin, 19 **/ scala> val peopleRdd = sc.textFile("examples/src/main/resources/people.txt") peopleRdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[18] at textFile at <console>:24 scala> val peopleDF3 = peopleRdd.map(_.split(",")).map(paras => (paras(0),paras(1).trim().toInt)).toDF("name","age") peopleDF3: org.apache.spark.sql.DataFrame = [name: string, age: int] scala> peopleDF.show() +-------+---+ | name|age| +-------+---+ |Michael| 29| | Andy| 30| | Justin| 19| +-------+---+
// This import is needed to use the $-notation import spark.implicits._ // Print the schema in a tree format df.printSchema() // root // |-- age: long (nullable = true) // |-- name: string (nullable = true) // Select only the "name" column df.select("name").show() // +-------+ // | name| // +-------+ // |Michael| // | Andy| // | Justin| // +-------+ // Select everybody, but increment the age by 1 df.select($"name", $"age" + 1).show() // +-------+---------+ // | name|(age + 1)| // +-------+---------+ // |Michael| null| // | Andy| 31| // | Justin| 20| // +-------+---------+ // Select people older than 21 df.filter($"age" > 21).show() // +---+----+ // |age|name| // +---+----+ // | 30|Andy| // +---+----+ // Count people by age df.groupBy("age").count().show() // +----+-----+ // | age|count| // +----+-----+ // | 19| 1| // |null| 1| // | 30| 1| // +----+-----+
// Register the DataFrame as a SQL temporary view df.createOrReplaceTempView("people") val sqlDF = spark.sql("SELECT * FROM people") sqlDF.show() // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+ // Register the DataFrame as a global temporary view df.createGlobalTempView("people") // Global temporary view is tied to a system preserved database `global_temp` spark.sql("SELECT * FROM global_temp.people").show() // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+ // Global temporary view is cross-session spark.newSession().sql("SELECT * FROM global_temp.people").show() // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+
临时表是Session范围内的,Session退出后,表就失效了。如果想应用范围内有效,可以使用全局表。注意使用全局表时,需要全路径访问,如:global_temp.people
Dataset是具有强类型的数据集合,需要提供对应的类型信息
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit, // you can use custom classes that implement the Product interface case class Person(name: String, age: Long) // Encoders are created for case classes val caseClassDS = Seq(Person("Andy", 32)).toDS() caseClassDS.show() // +----+---+ // |name|age| // +----+---+ // |Andy| 32| // +----+---+ // Encoders for most common types are automatically provided by importing spark.implicits._ val primitiveDS = Seq(1, 2, 3).toDS() primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4) // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name val path = "examples/src/main/resources/people.json" val peopleDS = spark.read.json(path).as[Person] peopleDS.show() // +----+-------+ // | age| name| // +----+-------+ // |null|Michael| // | 30| Andy| // | 19| Justin| // +----+-------+
Spark SQL支持通过两种方式将存在的RDD转换为Dataset,转换的过程中需要让Dataset获取RDD中的Schema信息,主要有两种方式,一种是通过反射来获取RDD中的Schema信息。这种方式适合于列名已知的情况下。第二种是通过编程接口的方式将Schema信息应用于RDD,这种方式可以处理那种在运行时才能知道列的方式
SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了table的结构,case类属性通过反射变成了表的列名。Case类可以包含诸如Seqs或者Array等复杂的结构
// For implicit conversions from RDDs to DataFrames import spark.implicits._ // Create an RDD of Person objects from a text file, convert it to a Dataframe val peopleDF = spark.sparkContext .textFile("examples/src/main/resources/people.txt") .map(_.split(",")) .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) .toDF() // Register the DataFrame as a temporary view peopleDF.createOrReplaceTempView("people") // SQL statements can be run by using the sql methods provided by Spark val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19") // The columns of a row in the result can be accessed by field index ROW object teenagersDF.map(teenager => "Name: " + teenager(0)).show() // +------------+ // | value| // +------------+ // |Name: Justin| // +------------+ // or by field name teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show() // +------------+ // | value| // +------------+ // |Name: Justin| // +------------+ // No pre-defined encoders for Dataset[Map[K,V]], define explicitly implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]] // Primitive types and case classes can be also defined as // implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder() // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T] teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect() // Array(Map("name" -> "Justin", "age" -> 19))
如果case类不能够提前定义,可以通过下面三个步骤定义一个DataFrame
创建一个多行结构的RDD
创建用StructType来表示的行结构信息
通过SparkSession提供的createDataFrame方法来应用Schema
import org.apache.spark.sql.types._ // Create an RDD val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt") // The schema is encoded in a string,应该是动态通过程序生成的 val schemaString = "name age" // Generate the schema based on the string of schema Array[StructFiled] val fields = schemaString.split(" ") .map(fieldName => StructField(fieldName, StringType, nullable = true)) // val filed = schemaString.split(" ").map(filename=> filename match{ case "name"=> StructField(filename,StringType,nullable = true); case "age"=>StructField(filename, IntegerType,nullable = true)} ) val schema = StructType(fields) // Convert records of the RDD (people) to Rows import org.apache.spark.sql._ val rowRDD = peopleRDD .map(_.split(",")) .map(attributes => Row(attributes(0), attributes(1).trim)) // Apply the schema to the RDD val peopleDF = spark.createDataFrame(rowRDD, schema) // Creates a temporary view using the DataFrame peopleDF.createOrReplaceTempView("people") // SQL can be run over a temporary view created using DataFrames val results = spark.sql("SELECT name FROM people") // The results of SQL queries are DataFrames and support all the normal RDD operations // The columns of a row in the result can be accessed by field index or by field name results.map(attributes => "Name: " + attributes(0)).show() // +-------------+ // | value| // +-------------+ // |Name: Michael| // | Name: Andy| // | Name: Justin| // +-------------+
RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换
DataFrame/Dataset转RDD:
val rdd1=testDF.rdd val rdd2=testDS.rdd
RDD转DataFrame:
import spark.implicits._ val testDF = rdd.map {line=> (line._1,line._2) }.toDF("col1","col2")
一般用元组把一行的数据写在一起,然后在toDF中指定字段名
RDD转Dataset:
import spark.implicits._ case class Coltest(col1:String, col2:Int) extends Serializable //定义字段名和类型 val testDS = rdd.map {line=> Coltest(line._1,line._2) }.toDS
可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可
Dataset转DataFrame:
这个也很简单,因为只是把case class封装成Row
import spark.implicits._ val testDF = testDS.toDF
DataFrame转Dataset:
import spark.implicits._ case class Coltest(col1:String, col2:Int) extends Serializable //定义字段名和类型 val testDS = testDF.as[Coltest]
这个方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
在使用一些特殊的操作时,一定要加上import spark.implicits._ 不然toDF、toDS无法使用
通过spark.udf功能用户可以自定义函数
scala> val df = spark.read.json("examples/src/main/resources/people.json") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string] scala> df.show() +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+ scala> spark.udf.register("addName", (x:String)=> "Name:"+x) res5: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType))) scala> df.createOrReplaceTempView("people") scala> spark.sql("Select addName(name), age from people").show() +-----------------+----+ |UDF:addName(name)| age| +-----------------+----+ | Name:Michael|null| | Name:Andy| 30| | Name:Justin| 19| +-----------------+----+
强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数,如count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数
通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。下面展示一个求平均工资的自定义聚合函数
import org.apache.spark.sql.expressions.MutableAggregationBuffer import org.apache.spark.sql.expressions.UserDefinedAggregateFunction import org.apache.spark.sql.types._ import org.apache.spark.sql.Row import org.apache.spark.sql.SparkSession object MyAverage extends UserDefinedAggregateFunction { // 聚合函数输入参数的数据类型 def inputSchema: StructType = StructType (StructField ("inputColumn", LongType) :: Nil) // 聚合缓冲区中值得数据类型 def bufferSchema: StructType = { StructType (StructField ("sum", LongType) :: StructField ("count", LongType) :: Nil) } // 返回值的数据类型 def dataType: DataType = DoubleType // 对于相同的输入是否一直返回相同的输出。 def deterministic: Boolean = true // 初始化 def initialize (buffer: MutableAggregationBuffer): Unit = { // 存工资的总额 buffer (0) = 0L // 存工资的个数 buffer (1) = 0L } // 相同Execute间的数据合并。 def update (buffer: MutableAggregationBuffer, input: Row): Unit = { if (! input.isNullAt (0) ) { buffer (0) = buffer.getLong (0) + input.getLong (0) buffer (1) = buffer.getLong (1) + 1 } } // 不同Execute间的数据合并 def merge (buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { buffer1 (0) = buffer1.getLong (0) + buffer2.getLong (0) buffer1 (1) = buffer1.getLong (1) + buffer2.getLong (1) } // 计算最终结果 def evaluate (buffer: Row): Double = buffer.getLong (0).toDouble / buffer.getLong (1) } // 注册函数 spark.udf.register("myAverage", MyAverage) val df = spark.read.json("examples/src/main/resources/employees.json") df.createOrReplaceTempView("employees") df.show() // +-------+------+ // | name|salary| // +-------+------+ // |Michael| 3000| // | Andy| 4500| // | Justin| 3500| // | Berta| 4000| // +-------+------+ val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees") result.show() // +--------------+ // |average_salary| // +--------------+ // | 3750.0| // +--------------+
通过继承Aggregator来实现强类型自定义聚合函数,同样是求平均工资
import org.apache.spark.sql.expressions.Aggregator import org.apache.spark.sql.Encoder import org.apache.spark.sql.Encoders import org.apache.spark.sql.SparkSession // 既然是强类型,可能有case类 case class Employee(name: String, salary: Long) case class Average(var sum: Long, var count: Long) object MyAverage extends Aggregator[Employee, Average, Double] { // 定义一个数据结构,保存工资总数和工资总个数,初始都为 0 def zero: Average = Average(0L, 0L) // Combine two values to produce a new value. For performance, the function may modify `buffer` // and return it instead of constructing a new object def reduce(buffer: Average, employee: Employee): Average = { buffer.sum += employee.salary buffer.count += 1 buffer } // 聚合不同execute的结果 def merge(b1: Average, b2: Average): Average = { b1.sum += b2.sum b1.count += b2.count b1 } // 计算输出 def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count // 设定之间值类型的编码器,要转换成case类 // Encoders.product 是进行 scala 元组和 case 类转换的编码器 def bufferEncoder: Encoder[Average] = Encoders.product // 设定最终输出值的编码器 def outputEncoder: Encoder[Double] = Encoders.scalaDouble } import spark.implicits._ val ds = spark.read.json("examples/src/main/resources/employees.json").as[Employee] ds.show() // +-------+------+ // | name|salary| // +-------+------+ // |Michael| 3000| // | Andy| 4500| // | Justin| 3500| // | Berta| 4000| // +-------+------+ // Convert the function to a `TypedColumn` and give it a name val averageSalary = MyAverage.toColumn.name("average_salary") val result = ds.select(averageSalary) result.show() // +--------------+ // |average_salary| // +--------------+ // | 3750.0| // +--------------+
3. Spark SQL解析
标签:sed sparksql 展示 spark sql ons 结果 数据源 call 保存