当前位置:Gxlcms > 数据库问题 > 3. Spark SQL解析

3. Spark SQL解析

时间:2021-07-01 10:21:17 帮助过:27人阅读

3.1 新的起始点SparkSession 

      在老的版本中,SparkSQL提供两种SQL查询起始点,一个叫SQLContext,用于Spark自己提供的SQL查询,一个叫HiveContext,用于连接Hive的查询,SparkSession是Spark最新的SQL查询起始点,实质上是SQLCotext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的

import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder()
  .appName("Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

      SparkSession.builder用于创建一个SparkSession

      import spark.implicits._的引入是用于将DataFrame隐式转换成RDD,使df能够使用RDD中的方法

      如果需要Hive支持,则需要以下创建语句:

import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder()
  .appName("Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .enableHiveSupport()
  .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

3.2 创建DataFrames 

      在Spark SQL中SparkSession是创建DataFrames和执行SQL的入口,创建DataFrames有三种方式,一种是可以从一个存在的RDD进行转换,还可以从Hive Table进行查询返回,或者通过Spark的数据源进行创建

      从Spark数据源进行创建:

val df = spark.read.json("examples/src/main/resources/people.json")
// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

      从RDD进行转换:

/**
Michael, 29
Andy, 30
Justin, 19
  **/
scala> val peopleRdd = sc.textFile("examples/src/main/resources/people.txt")
peopleRdd: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt
MapPartitionsRDD[18] at textFile at <console>:24

scala> val peopleDF3 = peopleRdd.map(_.split(",")).map(paras => (paras(0),paras(1).trim().toInt)).toDF("name","age")
peopleDF3: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> peopleDF.show()
+-------+---+
|   name|age|
+-------+---+
|Michael| 29|
|   Andy| 30|
| Justin| 19|
+-------+---+

3.3 DataFrame常用操作 

  3.3.1 DSL风格语法 

// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)

// Select only the "name" column
df.select("name").show()
// +-------+
// |   name|
// +-------+
// |Michael|
// |   Andy|
// | Justin|
// +-------+

// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// +-------+---------+
// |   name|(age + 1)|
// +-------+---------+
// |Michael|     null|
// |   Andy|       31|
// | Justin|       20|
// +-------+---------+

// Select people older than 21
df.filter($"age" > 21).show()
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+

// Count people by age
df.groupBy("age").count().show()
// +----+-----+
// | age|count|
// +----+-----+
// |  19|    1|
// |null|    1|
// |  30|    1|
// +----+-----+

  3.3.2 SQL风格语法  

// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age| name|
// +----+-------+
// |null|Michael|
// | 30| Andy|
// | 19| Justin|
// +----+-------+

      临时表是Session范围内的,Session退出后,表就失效了。如果想应用范围内有效,可以使用全局表。注意使用全局表时,需要全路径访问,如:global_temp.people

3.4 创建DataSet  

      Dataset是具有强类型的数据集合,需要提供对应的类型信息

// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface
case class Person(name: String, age: Long)

// Encoders are created for case classes
val caseClassDS = Seq(Person("Andy", 32)).toDS()
caseClassDS.show()
// +----+---+
// |name|age|
// +----+---+
// |Andy| 32|
// +----+---+

// Encoders for most common types are automatically provided by importing spark.implicits._
val primitiveDS = Seq(1, 2, 3).toDS()
primitiveDS.map(_ + 1).collect() // Returns: Array(2, 3, 4)

// DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name
val path = "examples/src/main/resources/people.json"
val peopleDS = spark.read.json(path).as[Person]
peopleDS.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

3.5 Dataset和RDD互操作  

      Spark SQL支持通过两种方式将存在的RDD转换为Dataset,转换的过程中需要让Dataset获取RDD中的Schema信息,主要有两种方式,一种是通过反射来获取RDD中的Schema信息。这种方式适合于列名已知的情况下。第二种是通过编程接口的方式将Schema信息应用于RDD,这种方式可以处理那种在运行时才能知道列的方式

  3.5.1 通过反射获取Schema 

      SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了table的结构,case类属性通过反射变成了表的列名。Case类可以包含诸如Seqs或者Array等复杂的结构

// For implicit conversions from RDDs to DataFrames
import spark.implicits._

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
.textFile("examples/src/main/resources/people.txt")
.map(_.split(","))
.map(attributes => Person(attributes(0), attributes(1).trim.toInt))
.toDF()

// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")

// SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

// The columns of a row in the result can be accessed by field index ROW object
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// or by field name
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// No pre-defined encoders for Dataset[Map[K,V]], define explicitly
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
// Primitive types and case classes can be also defined as
// implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
// Array(Map("name" -> "Justin", "age" -> 19))

  3.5.2 通过编程设置Schema  

      如果case类不能够提前定义,可以通过下面三个步骤定义一个DataFrame

      创建一个多行结构的RDD

      创建用StructType来表示的行结构信息

      通过SparkSession提供的createDataFrame方法来应用Schema

import org.apache.spark.sql.types._

// Create an RDD
val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt")

// The schema is encoded in a string,应该是动态通过程序生成的
val schemaString = "name age"

// Generate the schema based on the string of schema Array[StructFiled]
val fields = schemaString.split(" ")
.map(fieldName => StructField(fieldName, StringType, nullable = true))

// val filed = schemaString.split(" ").map(filename=> filename match{ case "name"=>
StructField(filename,StringType,nullable = true); case "age"=>StructField(filename, IntegerType,nullable = true)} )

val schema = StructType(fields)

// Convert records of the RDD (people) to Rows
import org.apache.spark.sql._
val rowRDD = peopleRDD
.map(_.split(","))
.map(attributes => Row(attributes(0), attributes(1).trim))

// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

// SQL can be run over a temporary view created using DataFrames
val results = spark.sql("SELECT name FROM people")

// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => "Name: " + attributes(0)).show()
// +-------------+
// |        value|
// +-------------+
// |Name: Michael|
// | Name:   Andy|
// | Name: Justin|
// +-------------+

3.6 类型之间的转换总结  

      RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换

      DataFrame/Dataset转RDD:

val rdd1=testDF.rdd 
val rdd2=testDS.rdd

      RDD转DataFrame:

import spark.implicits._
val testDF = rdd.map {line=>
        (line._1,line._2) 
     }.toDF("col1","col2")            

      一般用元组把一行的数据写在一起,然后在toDF中指定字段名

      RDD转Dataset:

import spark.implicits._
case class Coltest(col1:String, col2:Int) extends Serializable //定义字段名和类型
val testDS = rdd.map {line=> 
        Coltest(line._1,line._2)
     }.toDS

      可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可 

      Dataset转DataFrame:

      这个也很简单,因为只是把case class封装成Row

import spark.implicits._ 
val testDF = testDS.toDF

      DataFrame转Dataset:

import spark.implicits._
case class Coltest(col1:String, col2:Int) extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest]

      这个方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便

      在使用一些特殊的操作时,一定要加上import spark.implicits._ 不然toDF、toDS无法使用 

3.7 用户自定义函数 

      通过spark.udf功能用户可以自定义函数

  3.7.1 用户自定义UDF函数 

scala> val df = spark.read.json("examples/src/main/resources/people.json") 
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

scala> df.show()
+----+-------+
| age|   name|
+----+-------+
|null|Michael|
|  30|   Andy|
|  19| Justin|
+----+-------+

scala> spark.udf.register("addName", (x:String)=> "Name:"+x)
res5: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))

scala> df.createOrReplaceTempView("people")

scala> spark.sql("Select addName(name), age from people").show()
+-----------------+----+
|UDF:addName(name)| age|
+-----------------+----+
|     Name:Michael|null|
|        Name:Andy|  30|
|      Name:Justin|  19|
+-----------------+----+

  3.7.2 用户自定义聚合函数  

      强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数,如count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数

    3.7.2.1 弱类型用户自定义聚合函数 

      通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。下面展示一个求平均工资的自定义聚合函数

import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession

object MyAverage extends UserDefinedAggregateFunction {


  // 聚合函数输入参数的数据类型
  def inputSchema: StructType = StructType (StructField ("inputColumn", LongType) :: Nil)
  
  // 聚合缓冲区中值得数据类型
  def bufferSchema: StructType = {
    StructType (StructField ("sum", LongType) :: StructField ("count", LongType) :: Nil)
  }

  // 返回值的数据类型
  def dataType: DataType = DoubleType
  // 对于相同的输入是否一直返回相同的输出。
  def deterministic: Boolean = true
  // 初始化
  def initialize (buffer: MutableAggregationBuffer): Unit = {
    // 存工资的总额
    buffer (0) = 0L
    // 存工资的个数
    buffer (1) = 0L
  }
  // 相同Execute间的数据合并。
  def update (buffer: MutableAggregationBuffer, input: Row): Unit = {
    if (! input.isNullAt (0) ) {
    buffer (0) = buffer.getLong (0) + input.getLong (0)
    buffer (1) = buffer.getLong (1) + 1
    }
  }
  // 不同Execute间的数据合并
  def merge (buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1 (0) = buffer1.getLong (0) + buffer2.getLong (0)
    buffer1 (1) = buffer1.getLong (1) + buffer2.getLong (1)
  }
  // 计算最终结果
  def evaluate (buffer: Row): Double = buffer.getLong (0).toDouble / buffer.getLong (1)
}
  
// 注册函数
spark.udf.register("myAverage", MyAverage)

val df = spark.read.json("examples/src/main/resources/employees.json")
df.createOrReplaceTempView("employees")
df.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// |   Andy| 4500|
// | Justin| 3500|
// |  Berta| 4000|
// +-------+------+

val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+

    3.7.2.2 强类型用户自定义聚合函数  

      通过继承Aggregator来实现强类型自定义聚合函数,同样是求平均工资

import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.SparkSession

// 既然是强类型,可能有case类
case class Employee(name: String, salary: Long)
case class Average(var sum: Long, var count: Long)

object MyAverage extends Aggregator[Employee, Average, Double] {
// 定义一个数据结构,保存工资总数和工资总个数,初始都为 0
def zero: Average = Average(0L, 0L)
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
def reduce(buffer: Average, employee: Employee): Average = {
buffer.sum += employee.salary
buffer.count += 1
buffer
}

// 聚合不同execute的结果
def merge(b1: Average, b2: Average): Average = {
b1.sum += b2.sum
b1.count += b2.count
b1
}

// 计算输出
def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
// 设定之间值类型的编码器,要转换成case类
// Encoders.product 是进行 scala 元组和 case 类转换的编码器
def bufferEncoder: Encoder[Average] = Encoders.product
// 设定最终输出值的编码器
def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

import spark.implicits._
val ds = spark.read.json("examples/src/main/resources/employees.json").as[Employee]
ds.show()
// +-------+------+
// |   name|salary|
// +-------+------+
// |Michael|  3000|
// |   Andy|  4500|
// | Justin|  3500|
// |  Berta|  4000|
// +-------+------+

// Convert the function to a `TypedColumn` and give it a name
val averageSalary = MyAverage.toColumn.name("average_salary")
val result = ds.select(averageSalary)
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+

 

3. Spark SQL解析

标签:sed   sparksql   展示   spark sql   ons   结果   数据源   call   保存   

人气教程排行