时间:2021-07-01 10:21:17 帮助过:11人阅读
load data local inpath ‘/root/student.txt‘ into table student_info.student location "/user/root/student" ;
划重点:要回手写代码
创建员工基本信息表(EmployeeInfo),字段包括(员工 ID,员工姓名,员工身份证号,性别,年龄,所属部门,岗位,入职公司时间,离职公司时间),分区字段为入职公司时间,其行分隔符为”\n “,字段分隔符为”\t “。其中所属部门包括行政部、财务部、研发部、教学部,其对应岗位包括行政经理、行政专员、财务经理、财务专员、研发工程师、测试工程师、实施工程师、讲师、助教、班主任等,时间类型值如:2018-05-10 11:00:00
创建员工收入表(IncomeInfo),字段包括(员工 ID,员工姓名,收入金额,收入所属
月份,收入类型,收入薪水的时间),分区字段为发放薪水的时间,其中收入类型包括薪资、奖金、公司福利、罚款四种情况 ; 时间类型值如:2018-05-10 11:00:00。
注意:时间类型是2018-05-10 11:00:00,需要对字段进行处理
create external table test.employee_info(
id string comment ‘员工id‘,
name string comment ‘员工姓名‘,
indentity_card string comment ‘身份证号‘,
gender string comment ‘性别‘,
department string comment ‘所属部门‘,
post string comment ‘岗位‘,
hire_date string comment ‘入职时间‘,
departure_date string comment ‘离职时间‘
) comment "员工基本信息表"
partitioned by (day string comment "员工入职时间")
row format delimited fields terminated by ‘\t‘
lines terminated by ‘\n‘
stored as textfile
location ‘/user/root/employee‘;
create external table test.income_info(
id string comment ‘员工id‘,
name string comment ‘员工姓名‘,
income_data string comment ‘收入‘,
income_month string comment ‘收入所属月份‘,
income_type string comment ‘收入类型‘,
income_datetime string comment ‘收入薪水时间‘
) comment ‘员工收入表‘
partitioned by (day string comment "员工发放薪水时间")
row format delimited fields terminated by ‘\t‘
lines terminated by ‘\n‘
stored as textfile
location ‘/user/root/income‘;
select
income_year,(income_data-(nvl(penalty_data,0))) as company_cost
from
(
-- 统计员工收入金额和罚款金额,输出 2019 500 10
select
income_year,
sum(case when income_type!=‘罚款‘ then data_total else 0 end) as income_data,
sum(case when income_type=‘罚款‘ then data_total else 0 end) as penalty_data
from
(
-- 按照年份、收入类型求收入金额
select
year(to_date(income_datetime)) as income_year,
income_type,
sum(income_data) as data_total
from
test.income_info
group by
year(to_date(income_datetime)) ,income_type
) tmp_a
group by tmp_a.income_year
) as temp
order by income_year desc;
--根据id关联得出department,和消费类型
select
income_year,department,
(sum(case when income_type!=‘罚款‘ then income_data else 0 end) - sum(case when income_type=‘罚款‘ then income_data else 0 end) ) as department_cost
from
(
-- 先对员工进行薪资类别的聚合统计
select
id,year(to_date(income_datetime)) as income_year,income_type,sum(income_data) as income_data
from
test.income_info
group by
year(to_date(income_datetime)),id,income_type
) temp_a
inner join
test.employee_info b
on
temp_a.id=b.id
group by
department,income_year
order by income_year desc , department_cost asc;
select department,department_cost,dense_rank() over(order by department_cost desc) as cost_rank
from
(
--根据id关联得出department,和消费类型
select
department,
(sum(case when income_type!=‘罚款‘ then income_data else 0 end) - sum(case when income_type=‘罚款‘ then income_data else 0 end) ) as department_cost
from
(
-- 先对员工进行薪资类别的聚合统计
select
id,income_type,sum(income_data) as income_data
from
test.income_info
group by
id,income_type
) temp_a
inner join
test.employee_info b
on
temp_a.id=b.id
group by
department
) tmp_c ;
create external table test.income_dynamic(
id string comment ‘员工id‘,
name string comment ‘员工姓名‘,
income_data_current string comment ‘本月收入‘,
income_datetime_current string comment 本月‘收入薪水时间‘,
income_data_last string comment ‘上月收入‘,
income_datetime_last string comment ‘上月收入薪水时间‘,
) comment ‘员工收入动态表‘
partitioned by (day string comment "员工本月发放薪水时间")
row format delimited fields terminated by ‘\t‘
lines terminated by ‘\n‘
stored as textfile
location ‘/user/root/income‘;
-- ------------------------------------------------------------------------------
-- 动态分区插入
-- 插入语句
-- 采用full join
insert into table test.income_dynamic partition(day)
select
(case when id_a is not null then id_a else id_b end ) as id,
(case when name_a is not null then name_a else name_b end ) as name ,
income_data,income_datetime,income_data_b,income_datetime_b,day
from
(
-- 选出表中所有的数据
select
id as id_a,name as name_a,income_data,income_datetime,day,concat(year(to_date(day)),month(to_date(day))) as day_flag
from
test.income_info
where
income_type=‘薪资‘ ) tmp_a
full outer join
(
-- 将表中的收到薪水的日期整体加一个月
select
id as id_b,name as name_b,income_data as income_data_b,income_datetime as income_datetime_b,concat(year(add_months(to_date(day),1)),month(add_months(to_date(day),1))) as month_flag
from
test.income_info
where
income_type=‘薪资‘
) tmp_b
on
tmp_a.day_flag=tmp_b.month_flag
and
tmp_a.id_a=tmp_b.id_b
where day is not null
;
1、问题
hive如何将
a b 1
a b 2
a b 3
c d 4
c d 5
c d 6
变为:
a b 1,2,3
c d 4,5,6
-------------------------------------------------------------------------------------------
2、数据
test.txt
a b 1
a b 2
a b 3
c d 4
c d 5
c d 6
-------------------------------------------------------------------------------------------
3、答案
1.建表
drop table tmp_jiangzl_test;
create table tmp_jiangzl_test
(
col1 string,
col2 string,
col3 string
)
row format delimited fields terminated by ‘\t‘
stored as textfile;
-- 加载数据
load data local inpath ‘/home/jiangzl/shell/test.txt‘ into table tmp_jiangzl_test;
2.处理
select col1,col2,concat_ws(‘,‘,collect_set(col3))
from tmp_jiangzl_test
group by col1,col2;
---------------------------------------------------------------------------------------
collect_set/concat_ws语法参考链接:https://blog.csdn.net/waiwai3/article/details/79071544
https://blog.csdn.net/yeweiouyang/article/details/41286469 [Hive]用concat_w实现将多行记录合并成一行
---------------------------------------------------------------------------------------
二、列转行
1、问题
hive如何将
a b 1,2,3
c d 4,5,6
变为:
a b 1
a b 2
a b 3
c d 4
c d 5
c d 6
---------------------------------------------------------------------------------------------
2、答案
1.建表
drop table tmp_jiangzl_test;
create table tmp_jiangzl_test
(
col1 string,
col2 string,
col3 string
)
row format delimited fields terminated by ‘\t‘
stored as textfile;
处理:
select col1, col2, col5
from tmp_jiangzl_test a
lateral view explode(split(col3,‘,‘)) b AS col5;
---------------------------------------------------------------------------------------
lateral view 语法参考链接:
https://blog.csdn.net/clerk0324/article/details/58600284
1.创建数据库
create database wordcount;
2.创建外部表
create external table word_data(line string) row format delimited fields terminated by ‘,‘ location ‘/home/hadoop/worddata‘;
3.映射数据表
load data inpath ‘/home/hadoop/worddata‘ into table word_data;
4.这里假设我们的数据存放在hadoop下,路径为:/home/hadoop/worddata,里面主要是一些单词文件,内容大概为:
hello man
what are you doing now
my running
hello
kevin
hi man
执行了上述hql就会创建一张表src_wordcount,内容是这些文件的每行数据,每行数据存在字段line中,select * from word_data;就可以看到这些数据
5.根据MapReduce的规则,我们需要进行拆分,把每行数据拆分成单词,这里需要用到一个hive的内置表生成函数(UDTF):explode(array),参数是array,其实就是行变多列:
create table words(word string);
insert into table words select explode(split(line, " ")) as word from word_data;
6.查看words表内容
OK
hello
man
what
are
you
doing
now
my
running
hello
kevin
hi
man
split是拆分函数,跟java的split功能一样,这里是按照空格拆分,所以执行完hql语句,words表里面就全部保存的单个单词
7.group by统计单词
select word, count(*) from wordcount.words group by word;
wordcount.words 库名称.表名称,group by word这个word是create table words(word string) 命令创建的word string
结果:
are 1
doing 1
hello 2
hi 1
kevin 1
man 2
my 1
now 1
running 1
what 1
you 1
在保证一次遍历的情况下,重点是O(1)复杂度
select buyer_id
from
(
select buyer_id,sum(case when order_id=‘面粉‘ then 0 else 1 end) as flag
from order
) as tmp
where flag=0;
select count(*)/2 as weibo_relation_number
from
(
(select concat(id,keep_id) as flag from weibo_relation)
union all --全部合并到一起,不能提前去重
(select concat(keep_id,id) as flag from weibo_relation)
) as tmp
having count(flag) =2
group by flag;
select count(distinct keep_id) as total_keep_id
from weibo_relation
where id
in
(select id from weibo_relation where keep_id=‘c‘)
Hive手写SQL案例
标签:聚合 答案 助教 mapred net time 身份证 语法 nal