时间:2021-07-01 10:21:17 帮助过:4人阅读
二、源代码
1 import org.apache.spark.sql.SparkSession 2 3 //在Scala中,样例类在编译时会默认实现Product特质 4 case class Ultraman(name: String, age: BigInt, address: Array[String]) 5 6 object DatasetAndDataFrameExample { 7 8 def main(args: Array[String]): Unit = { 9 10 //实例化SparkSession 11 val spark = SparkSession 12 .builder() 13 .master("local[*]") 14 .appName("DatasetAndDataFrameExample") 15 .getOrCreate() 16 17 //为避免影响输出结果,设置日志打印等级为"WARN" 18 spark.sparkContext.setLogLevel("WARN") 19 20 import spark.implicits._ 21 22 val df1 = spark.read.json("/home/liuyin/IdeaProjects/Spark/src/main/scala/chap07_SparkSQL/奥特曼.json") 23 df1.show() 24 df1.filter($"address" === Array("M78")).filter($"age" > 10000).show() 25 26 val ds1 = spark.read.json("/home/liuyin/IdeaProjects/Spark/src/main/scala/chap07_SparkSQL/奥特曼.json").as[Ultraman] 27 ds1.show() 28 ds1.filter(_.name == "迪迦").show() 29 30 spark.stop() 31 } 32 }
三、输出结果
SparkSQL学习案例:使用DataFrame和Dataset操作json数据
标签:alt tor string project info cts ima evel park