时间:2021-07-01 10:21:17 帮助过:6人阅读
SELECT DISTINCT < select_list > FROM < left_table > < join_type > JOIN < right_table > ON < join_condition > WHERE < where_condition > GROUP BY < group_by_list > HAVING < having_condition > ORDER BY < order_by_condition > LIMIT < limit_number >然而它的执行顺序是这样的
1 FROM <left_table> 2 ON <join_condition> 3 <join_type> JOIN <right_table> 4 WHERE <where_condition> 5 GROUP BY <group_by_list> 6 HAVING <having_condition> 7 SELECT 8 DISTINCT <select_list> 9 ORDER BY <order_by_condition> 10 LIMIT <limit_number>虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。 既然如此了,那就让我们一步步来看看其中的细节吧。 准备工作 1.创建测试数据库
create database testQuery2.创建测试表
CREATE TABLE table1 ( uid VARCHAR(10) NOT NULL, name VARCHAR(10) NOT NULL, PRIMARY KEY(uid) )ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2 ( oid INT NOT NULL auto_increment, uid VARCHAR(10), PRIMARY KEY(oid) )ENGINE=INNODB DEFAULT CHARSET=UTF8;3.插入数据
INSERT INTO table1(uid,name) VALUES(‘aaa‘,‘mike‘),(‘bbb‘,‘jack‘),(‘ccc‘,‘mike‘),(‘ddd‘,‘mike‘); INSERT INTO table2(uid) VALUES(‘aaa‘),(‘aaa‘),(‘bbb‘),(‘bbb‘),(‘bbb‘),(‘ccc‘),(NULL);4.最后想要的结果
SELECT a.uid, count(b.oid) AS total FROM table1 AS a LEFT JOIN table2 AS b ON a.uid = b.uid WHERE a. NAME = ‘mike‘ GROUP BY a.uid HAVING count(b.oid) < 2 ORDER BY total DESC LIMIT 1;
!现在开始SQL解析之旅吧! 1. FROM 当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。 (1-J1)笛卡尔积 计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。
mysql> select * from table1,table2; +-----+------+-----+------+ | uid | name | oid | uid | +-----+------+-----+------+ | aaa | mike | 1 | aaa | | bbb | jack | 1 | aaa | | ccc | mike | 1 | aaa | | ddd | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 2 | aaa | | ccc | mike | 2 | aaa | | ddd | mike | 2 | aaa | | aaa | mike | 3 | bbb | | bbb | jack | 3 | bbb | | ccc | mike | 3 | bbb | | ddd | mike | 3 | bbb | | aaa | mike | 4 | bbb | | bbb | jack | 4 | bbb | | ccc | mike | 4 | bbb | | ddd | mike | 4 | bbb | | aaa | mike | 5 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 5 | bbb | | ddd | mike | 5 | bbb | | aaa | mike | 6 | ccc | | bbb | jack | 6 | ccc | | ccc | mike | 6 | ccc | | ddd | mike | 6 | ccc | | aaa | mike | 7 | NULL | | bbb | jack | 7 | NULL | | ccc | mike | 7 | NULL | | ddd | mike | 7 | NULL | +-----+------+-----+------+ 28 rows in set (0.00 sec)
(1-J2)ON过滤 基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。 注意:这里因为语法限制,使用了‘WHERE‘代替,从中读者也可以感受到两者之间微妙的关系;
mysql> SELECT -> * -> FROM -> table1, -> table2 -> WHERE -> table1.uid = table2.uid -> ; +-----+------+-----+------+ | uid | name | oid | uid | +-----+------+-----+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 3 | bbb | | bbb | jack | 4 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 6 | ccc | +-----+------+-----+------+ 6 rows in set (0.00 sec)
(1-J3)添加外部列 如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | bbb | jack | 3 | bbb | | bbb | jack | 4 | bbb | | bbb | jack | 5 | bbb | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ 7 rows in set (0.00 sec)
下面从网上找到一张很形象的关于‘SQL JOINS‘的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。 2. WHERE 对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。 注意: 此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名; 与ON的区别: 如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列; 如果没有添加外部列,两者的效果是一样的; 应用: 对主表的过滤应该放在WHERE; 对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | aaa | mike | 2 | aaa | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ 4 rows in set (0.00 sec)
3. GROUP BY 这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。 注意: 其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数; 原因: GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少; 我的理解是: 根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘ -> GROUP BY -> a.uid; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | aaa | mike | 1 | aaa | | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ 3 rows in set (0.00 sec)
4. HAVING 这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。
mysql> SELECT -> * -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘ -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2; +-----+------+------+------+ | uid | name | oid | uid | +-----+------+------+------+ | ccc | mike | 6 | ccc | | ddd | mike | NULL | NULL | +-----+------+------+------+ 2 rows in set (0.00 sec)
5. SELECT 这个子句对SELECT子句中的元素进行处理,生成VT5表。 (5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1 (5-J2)DISTINCT 寻找VT5-1中的重复列,并删掉,生成VT5-J2 如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘ -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | | ddd | 0 | +-----+-------+ 2 rows in set (0.00 sec)
6.ORDER BY 从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。 注意: 唯一可使用SELECT中别名的地方;
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘ -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2 -> ORDER BY -> total DESC; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | | ddd | 0 | +-----+-------+ 2 rows in set (0.00 sec)
7.LIMIT LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。 注意: offset和rows的正负带来的影响; 当偏移量很大时效率是很低的,可以这么做: 采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集 采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果
mysql> SELECT -> a.uid, -> count(b.oid) AS total -> FROM -> table1 AS a -> LEFT JOIN table2 AS b ON a.uid = b.uid -> WHERE -> a. NAME = ‘mike‘ -> GROUP BY -> a.uid -> HAVING -> count(b.oid) < 2 -> ORDER BY -> total DESC -> LIMIT 1; +-----+-------+ | uid | total | +-----+-------+ | ccc | 1 | +-----+-------+ 1 row in set (0.00 sec)
至此SQL的解析之旅就结束了,上图总结一下: 参考书籍: 《MySQL性能调优与架构实践》 《MySQL技术内幕:SQL编程》 尾声: 嗯,到这里这一次的深入了解之旅就差不多真的结束了,虽然也不是很深入,只是一些东西将其东拼西凑在一起而已,参考了一些以前看过的书籍,大师之笔果然不一样。而且在这过程中也是get到了蛮多东西的,最重要的是更进一步意识到,计算机软件世界的宏大呀~ 另由于本人才疏学浅,其中难免存在纰漏错误之处,若发现劳烦告知修改,感谢~ 如需转载,请保留AnnsShadoW和本文地址http://www.cnblogs.com/annsshadow/p/5037667.html
步步深入:MySQL架构总览->查询执行流程->SQL解析顺序
标签:日志功能 记录 函数 这一 定位 ase data- oss 了解