当前位置:Gxlcms > 数据库问题 > MySQL索引

MySQL索引

时间:2021-07-01 10:21:17 帮助过:29人阅读

技术图片

我们编写存储过程为表s1批量添加记录,name字段的值均为egon,也就是说name这个字段的区分度很低(gender字段也是一样的,我们稍后再搭理它)

回忆b+树的结构,查询的速度与树的高度成反比,要想将树的高低控制的很低,需要保证:在某一层内数据项均是按照从左到右,从小到大的顺序依次排开,即左1<左2<左3<...

而对于区分度低的字段,无法找到大小关系,因为值都是相等的,毫无疑问,还想要用b+树存放这些等值的数据,只能增加树的高度,字段的区分度越低,则树的高度越高。极端的情况,索引字段的值都一样,那么b+树几乎成了一根棍。本例中就是这种极端的情况,name字段所有的值均为‘egon‘

#现在我们得出一个结论:为区分度低的字段建立索引,索引树的高度会很高,然而这具体会带来什么影响呢???

#1:如果条件是name=‘xxxx‘,那么肯定是可以第一时间判断出‘xxxx‘是不在索引树中的(因为树中所有的值均为‘egon’,看第一条的时候就知道你不在索引树里面了),所以查询速度很快

#2:如果条件正好是name=‘egon‘,查询时,我们永远无法从树的某个位置得到一个明确的范围,只能往下找,往下找,往下找。。。这与全表扫描的IO次数没有多大区别,所以速度很慢

3 =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

4 索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)

技术图片

? 把上面的条件写成 where id = 3000/3;你会发现速度变得很快,因为等于号后面的数字,是在比较之前就计算出来了,不需要每次都计算一次每次都计算一次了,跟直接等于一个常数是一样的,所以很快。结论是不要让你的索引字段参与到计算中。

5 and/or

#1、and与or的逻辑
    条件1 and 条件2:所有条件都成立才算成立,但凡要有一个条件不成立则最终结果不成立
    条件1 or 条件2:只要有一个条件成立则最终结果就成立

#2、and的工作原理
    条件:
        a = 10 and b = ‘xxx‘ and c > 3 and d =4
    索引:
        制作联合索引(d,a,b,c)
    工作原理:  #如果是你找的话,你会怎么找,是不是从左到右一个一个的比较啊,首先你不能确定a这个字段是不是有索引,即便是有索引,也不一定能确保命中索引了(所谓命中索引,就是应用上了索引),mysql不会这么笨的,看下面mysql是怎么找的:
        索引的本质原理就是先不断的把查找范围缩小下来,然后再进行处理,对于连续多个and:mysql会按照联合索引,从左到右的顺序找一个区分度高的索引字段(这样便可以快速锁定很小的范围),加速查询,即按照d—>a->b->c的顺序

#3、or的工作原理
    条件:
        a = 10 or b = ‘xxx‘ or c > 3 or d =4
    索引:
        制作联合索引(d,a,b,c)
        
    工作原理:
        只要一个匹配成功就行,所以对于连续多个or:mysql会按照条件的顺序,从左到右依次判断,即a->b->c->d

? 索引要加在数据区分度高的字段上

技术图片

? 在左边条件成立但是索引字段的区分度低的情况下(name与gender均属于这种情况),会依次往右找到一个区分度高的索引字段,加速查询

技术图片

技术图片

? 经过分析,在条件为name=‘egon‘ and gender=‘male‘ and id>333 and email=‘xxx‘的情况下,我们完全没必要为前三个条件的字段加索引,因为只能用上email字段的索引,前三个字段的索引反而会降低我们的查询效率

技术图片

6 最左前缀匹配原则(详见第八小节),非常重要的原则,对于组合索引mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配(指的是范围大了,有索引速度也慢),比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

技术图片

7 其他情况

- 使用函数
    select * from tb1 where reverse(email) = ‘egon‘;
            
- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where email = 999;
    
#排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段如果不是索引,则速度仍然很慢
    select email from s1 order by email desc;
    特别的:如果对主键排序,则还是速度很快:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 命中索引
    name                 -- 命中索引
    email                -- 未命中索引


- count(1)或count(列)代替count(*)在mysql中没有差别了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度

其他注意事项

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 创建表时尽量时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适合

8.联合索引与覆盖索引

8.1联合索引

    联合索引时指对表上的多个列合起来做一个索引,省的你查询的时候,where后面的条件字段一直再变,你就想给每个字段加索引的尴尬问题。联合索引的创建方法与单个索引的创建方法一样,不同之处在仅在于有多个索引列.

mysql> create table t(
    -> a int,
    -> b int,
    -> primary key(a),
    -> key idx_a_b(a,b)
    -> );
Query OK, 0 rows affected (0.11 sec)

    注意建立联合索引的一个原则:索引是有个最左匹配的原则的,所以建联合索引的时候,将区分度高的放在最左边,依次排下来,范围查询的条件尽可能的往后边放。

    联合索引的第二个好处是在第一个键相同的情况下,已经对第二个键进行了排序处理,例如在很多情况下应用程序都需要查询某个用户的购物情况,并按照时间进行排序,最后取出最近三次的购买记录,这时使用联合索引可以帮我们避免多一次的排序操作,因为索引本身在叶子节点已经排序了

#===========准备表==============
create table buy_log(
    userid int unsigned not null,
    buy_date date
);

insert into buy_log values
(1,‘2009-01-01‘),
(2,‘2009-01-01‘),
(3,‘2009-01-01‘),
(1,‘2009-02-01‘),
(3,‘2009-02-01‘),
(1,‘2009-03-01‘),
(1,‘2009-04-01‘);

alter table buy_log add key(userid);
alter table buy_log add key(userid,buy_date);

#===========验证==============
mysql> show create table buy_log;
| buy_log | CREATE TABLE `buy_log` (
  `userid` int(10) unsigned NOT NULL,
  `buy_date` date DEFAULT NULL,
  KEY `userid` (`userid`),
  KEY `userid_2` (`userid`,`buy_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |

#可以看到possible_keys在这里有两个索引可以用,分别是单个索引userid与联合索引userid_2,但是优化器最终选择了使用的key是userid因为该索引的叶子节点包含单个键值,所以理论上一个页能存放的记录应该更多
mysql> explain select * from buy_log where userid=2;
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
| id | select_type | table   | type | possible_keys   | key    | key_len | ref   | rows | Extra |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
|  1 | SIMPLE      | buy_log | ref  | userid,userid_2 | userid | 4       | const |    1 |       |
+----+-------------+---------+------+-----------------+--------+---------+-------+------+-------+
1 row in set (0.00 sec)

#接着假定要取出userid为1的最近3次的购买记录,用的就是联合索引userid_2了,因为在这个索引中,在userid=1的情况下,buy_date都已经排序好了
mysql> explain select * from buy_log where userid=1 order by buy_date desc limit 3;
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
| id | select_type | table   | type | possible_keys   | key      | key_len | ref   | rows | Extra                    |
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
|  1 | SIMPLE      | buy_log | ref  | userid,userid_2 | userid_2 | 4       | const |    4 | Using where; Using index |
+----+-------------+---------+------+-----------------+----------+---------+-------+------+--------------------------+
1 row in set (0.00 sec)

#ps:如果extra的排序显示是Using filesort,则意味着在查出数据后需要二次排序(如下查询语句,没有先用where userid=3先定位范围,于是即便命中索引也没用,需要二次排序)
mysql> explain select * from buy_log order by buy_date desc limit 3;
+----+-------------+---------+-------+---------------+----------+---------+------+------+-----------------------------+
| id | select_type | table   | type  | possible_keys | key      | key_len | ref  | rows | Extra                       |
+----+-------------+---------+-------+---------------+----------+---------+------+------+-----------------------------+
|  1 | SIMPLE      | buy_log | index | NULL          | userid_2 | 8       | NULL |    7 | Using index; Using filesort |
+----+-------------+---------+-------+---------------+----------+---------+------+------+-----------------------------+


#对于联合索引(a,b),下述语句可以直接使用该索引,无需二次排序
select ... from table where a=xxx order by b;

#然后对于联合索引(a,b,c)来首,下列语句同样可以直接通过索引得到结果
select ... from table where a=xxx order by b;
select ... from table where a=xxx and b=xxx order by c;

#但是对于联合索引(a,b,c),下列语句不能通过索引直接得到结果,还需要自己执行一次filesort操作,因为索引(a,c)并未排序
select ... from table where a=xxx order by c; 

8.2覆盖索引

InnoDB存储引擎支持覆盖索引(covering index,或称索引覆盖),即从辅助索引中就可以得到查询记录,而不需要查询聚集索引中的记录。

使用覆盖索引的一个好处是:辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作


注意:覆盖索引技术最早是在InnoDB Plugin中完成并实现,这意味着对于InnoDB版本小于1.0的,或者MySQL数据库版本为5.0以下的,InnoDB存储引擎不支持覆盖索引特性


对于InnoDB存储引擎的辅助索引而言,由于其包含了主键信息,因此其叶子节点存放的数据为(primary key1,priamey key2,...,key1,key2,...)

select age from s1 where id=123 and name = ‘egon‘; #id字段有索引,但是name字段没有索引,该sql命中了索引,但未覆盖,需要去聚集索引中再查找详细信息。
最牛逼的情况是,索引字段覆盖了所有,那全程通过索引来加速查询以及获取结果就ok了
mysql> desc s1;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
| id | int(11) | NO | | NULL | |
| name | varchar(20) | YES | | NULL | |
| gender | char(6) | YES | | NULL | |
| email | varchar(50) | YES | | NULL | |
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.21 sec)

mysql> explain select name from s1 where id=1000; #没有任何索引
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ALL | NULL | NULL | NULL | NULL | 2688336 | 10.00 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> create index idx_id on s1(id); #创建索引
Query OK, 0 rows affected (4.16 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> explain select name from s1 where id=1000; #命中辅助索引,但是未覆盖索引,还需要从聚集索引中查找name
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.08 sec)

mysql> explain select id from s1 where id=1000; #在辅助索引中就找到了全部信息,Using index代表覆盖索引
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | s1 | NULL | ref | idx_id | idx_id | 4 | const | 1 | 100.00 | Using index |
+----+-------------+-------+------------+------+---------------+--------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.03 sec)

    覆盖索引的另外一个好处是对某些统计问题而言的。基于上一小结创建的表buy_log,查询计划如下

mysql> explain select count(*) from buy_log;
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
| id | select_type | table   | type  | possible_keys | key    | key_len | ref  | rows | Extra       |
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
|  1 | SIMPLE      | buy_log | index | NULL          | userid | 4       | NULL |    7 | Using index |
+----+-------------+---------+-------+---------------+--------+---------+------+------+-------------+
1 row in set (0.00 sec)

    innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于buy_log表有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作,故优化器的选择如上key为userid辅助索引

    对于(a,b)形式的联合索引,一般是不可以选择b中所谓的查询条件。但如果是统计操作,并且是覆盖索引,则优化器还是会选择使用该索引,如下

#联合索引userid_2(userid,buy_date),一般情况,我们按照buy_date是无法使用该索引的,但特殊情况下:查询语句是统计操作,且是覆盖索引,则按照buy_date当做查询条件时,也可以使用该联合索引
mysql> explain select count(*) from buy_log where buy_date >= ‘2011-01-01‘ and buy_date < ‘2011-02-01‘;
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
| id | select_type | table   | type  | possible_keys | key      | key_len | ref  | rows | Extra                    |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
|  1 | SIMPLE      | buy_log | index | NULL          | userid_2 | 8       | NULL |    7 | Using where; Using index |
+----+-------------+---------+-------+---------------+----------+---------+------+------+--------------------------+
1 row in set (0.00 sec)

9.查询优化神器-explain

  关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

执行计划:让mysql预估执行操作(一般正确)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name=‘alex‘
        
        explain select * from userinfo3 where name=‘alex‘
        type: ALL(全表扫描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email=‘alex‘
        type: const(走索引)

MySQL索引

标签:怎么   程序   signed   购物   字典   平衡点   如图所示   har   处理   

人气教程排行