时间:2021-07-01 10:21:17 帮助过:8人阅读
{"user_id": "543462", "item_id":"1715", "category_id": "1464116", "behavior": "pv", "ts": "2017-11-26T01:00:00Z"} {"user_id": "662867", "item_id":"2244074", "category_id": "1575622", "behavior": "pv", "ts": "2017-11-26T01:00:00Z"} {"user_id": "662868", "item_id":"1784", "category_id": "54123654", "behavior": "pv", "ts": "2017-11-26T01:00:00Z"} {"user_id": "662854", "item_id":"1456", "category_id": "12345678", "behavior": "pv", "ts": "2017-11-26T01:00:00Z"} {"user_id": "662858", "item_id":"1457", "category_id": "12345679", "behavior": "pv", "ts": "2017-11-26T01:00:00Z"}
/bin/kafka-console-consumer.sh --bootstrap-server 192.168.58.177:9092 --topic my_topic --partition 0 --offset 0
3.在Flink的sqlclient 创建表
CREATE TABLE user_log1 ( user_id VARCHAR, item_id VARCHAR, category_id VARCHAR, behavior VARCHAR, ts VARCHAR ) WITH ( ‘connector.type‘ = ‘kafka‘, ‘connector.version‘ = ‘universal‘, ‘connector.topic‘ = ‘my-topic-one‘, ‘connector.startup-mode‘ = ‘earliest-offset‘, ‘connector.properties.group.id‘ = ‘testGroup‘, ‘connector.properties.zookeeper.connect‘ = ‘192.168.58.171:2181,192.168.58.177:2181,192.168.58.178:2181‘, ‘connector.properties.bootstrap.servers‘ = ‘192.168.58.177:9092‘, ‘format.type‘ = ‘json‘ );
select item_id,count(*) from user_log1 group by item_id;
Flink通过SQLClinet创建kafka源表并进行实时计算
标签:_id fse prope bootstra bin category bootstrap 技术 nec