当前位置:Gxlcms > 数据库问题 > 大型Electron应用本地数据库技术选型

大型Electron应用本地数据库技术选型

时间:2021-07-01 10:21:17 帮助过:61人阅读

atom.io/download/electron

注意:--target后面的内容与你使用的Electron的版本要一致

SQLite的数据库表结构

CREATE TABLE [message](
  [id] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE, 
  [msg_from] VARCHAR(80), 
  [msg_to] VARCHAR(80), 
  [msg] TEXT, 
  [create_time] DATETIME);

这里主要模拟了一个IM应用的消息表

SQLite的测试代码如下

let { app } = require(‘electron‘);
let messages = require(‘./messages‘)
let path = require(‘path‘);
let filename = path.join(app.getPath(‘userData‘), ‘db.db‘);
let db = require(‘knex‘)({
    client: ‘sqlite3‘,
    useNullAsDefault: true,
    connection: { filename },
    timezone: ‘UTC‘,
    dateStrings: true
});
let start = async () => {
    let startTime = Date.now();
    for (let i = 0; i < 10; i++) {
        let index = i % 2;
        await db(‘message‘).insert(messages[index]);
    }
    //let arr = await db(‘message‘).whereBetween(‘id‘,[1600,9600]);
    //await db(‘message‘).whereBetween(‘id‘,[0,10000]).del();
    //await db(‘message‘).update({msg:`天接云涛连晓雾。!!!`}).whereBetween(‘id‘,[2600,2800]);
    let endTime = Date.now();
    console.log(endTime - startTime);
}
module.exports = {
    start
}

其中用到了messages是两个消息体的JSON对象,代码如下:

let messages = [{
    msg_from: ‘辛弃疾‘,
    msg_to: ‘刘晓伦‘,
    msg: `醉里挑灯看剑,梦回吹角连营。 八百里分麾下炙, 五十弦翻塞外声, 沙场秋点兵。
    马作的卢飞快, 弓如霹雳弦惊。 了却君王天下事, 赢得生前身后名。 可怜白发生!`,
    create_time: new Date()
}, {
    msg_from: ‘李清照‘,
    msg_to: ‘刘晓伦‘,
    msg: `天接云涛连晓雾。 星河欲转千帆舞。 仿佛梦魂归帝所, 闻天语, 殷勤问我归何处。 我报路长嗟日暮, 学诗谩有惊人句。
    九万里风鹏正举。 风休住, 蓬舟吹取三山去!`,
    create_time: new Date(),
}];
module.exports = messages

IndexedDB环境

IndexedDB的测试代码是在渲染进程中执行的,代码如下:

let Dexie = require(‘Dexie‘);
const db = new Dexie(‘db‘);
db.version(1).stores({
  message: ‘++, message_from, message_to,msg,create_time‘
});
window.onload = async () => {
  let startTime = Date.now();
  for (let i = 0; i < 10000; i++) {
    let index = i % 2;
    await db.message.add(messages[index]);
  }
  //let arr = await db.message.where("id").between(1000, 9000).delete();
  let endTime = Date.now();
  console.log(endTime - startTime);
}

 

测试结果

插入

连续插入100行数据,执行8次

技术图片

[
  {
    name: ‘SQLite‘,
    data: [526,551,536, 897, 530, 509, 534,538]
  },
  {
    name: ‘IndexedDB‘,
    data: [333,221,167, 169, 336, 313, 187,169]
  }
]

 

连续插入1000行数据,执行7次

技术图片

[
  {
    name: ‘SQLite‘,
    data: [5669,7488,7443,7033,7231,7537,7563]
  },
  {
    name: ‘IndexedDB‘,
    data: [2140,2111,1755,1716,2126,1757,2006]
  }
]

 

连续插入10000行数据,执行4次

技术图片

[
  {
    name: ‘SQLite‘,
    data: [202415,158451,144221,143993]
  },
  {
    name: ‘IndexedDB‘,
    data: [20028,18979,21013,18738]
  }
]

 

已存在10000行数据的前提下,再插入10行数据

技术图片

[
  {
    name: ‘SQLite‘,
    data: [158,268,306,162,149,159]
  },
  {
    name: ‘IndexedDB‘,
    data: [56,99,47,49,53,52]
  }
]

 

检索

在10000行数据中按主键检索8000行数据

技术图片

[
  {
    name: ‘SQLite‘,
    data: [47,55,56,60]
  },
  {
    name: ‘IndexedDB‘,
    data: [62,54,58,55]
  }
]

 

删除

SQLite

已存在10000行数据的前提下,删除200行数据(毫秒):18、16、18

已存在10000行数据的前提下,删除8000行数据(毫秒):18

已存在10000行数据的前提下,删除10000行数据(毫秒):18

IndexedDB

已存在10000行数据的前提下,删除200行数据(毫秒):21、10、10

已存在10000行数据的前提下,删除8000行数据(毫秒):58

已存在10000行数据的前提下,删除10000行数据(毫秒):30

更新

SQLite

已存在10000行数据的前提下,更新1行数据(毫秒):8、8、8、9、8、8

已存在10000行数据的前提下,更新100行数据(毫秒):30、30、28、30、30

IndexedDB

已存在10000行数据的前提下,更新1行数据(毫秒):11、8、7、7、8、8

已存在10000行数据的前提下,更新100行数据(毫秒):15、14、12、10、13

结论分析

结论:插入数据两个数据库性能相差巨大,IndexedDB显然优于SQLite,检索,删除,更新操作两个数据库性能相差无几

分析:

SQLite有双写入机制,IndexedDB应该是有多级缓存写入机制(待考),显然多级缓存写入机制更优秀

因为是Electron工程下完成此对比,所以Js经Electron转到Node.js再转到SQLite的Node module最后才转到SQLite的C代码,这个过程可能是性能损耗的一大主要原因

最后:

综合对比下来,大型Electron应用更推荐使用IndexedDB来存储业务数据

(由于有Dexie的加持,IndexedDB操作也足够简单,所有中小型应用也是不错的选择)

如果你需要加密客户端数据,SQLite还需要外套sqlcipher这样的加密库,所以性能上会有更多损耗,

然而IndexedDB本身就有一层加密逻辑(可以说只能防君子,防不了小人),虽然简单,但聊胜于无。

最后

欢迎大家购买我的新书《Electron实战:入门、进阶与性能优化》,

书里还有更多有趣的内容,

大家感兴趣可以加QQ群949674481交流。

当当:http://product.dangdang.com/28547952.html;
京东:https://item.jd.com/12867054.html

技术图片

 

大型Electron应用本地数据库技术选型

标签:qq群   交互   索引   对象   article   个性   opener   tab   特殊   

人气教程排行