当前位置:Gxlcms > Python > Python介绍嵌套 JSON 秒变 Dataframe!

Python介绍嵌套 JSON 秒变 Dataframe!

时间:2021-07-01 10:21:17 帮助过:64人阅读

Python教程栏目介绍如何嵌套JSON

推荐(免费):Python教程

调用API和文档数据库会返回嵌套的JSON对象,当我们使用Python尝试将嵌套结构中的键转换为列时,数据加载到pandas中往往会得到如下结果:

  1. df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
说明:这里results是一个大的字典,issues是results其中的一个键,issues的值为一个嵌套JSON对象字典的列表,后面会看到JSON嵌套结构。

问题在于API返回了嵌套的JSON结构,而我们关心的键在对象中确处于不同级别。

嵌套的JSON结构张成这样的。

而我们想要的是下面这样的。

下面以一个API返回的数据为例,API通常包含有关字段的元数据。假设下面这些是我们想要的字段。

  • key:JSON密钥,在第一级的位置。
  • summary:第二级的“字段”对象。
  • status name:第三级位置。
  • statusCategory name:位于第4个嵌套级别。

如上,我们选择要提取的字段在issues列表内的JSON结构中分别处于4个不同的嵌套级别,一环扣一环。

  1. {
  2. "expand": "schema,names",
  3. "issues": [
  4. {
  5. "fields": {
  6. "issuetype": {
  7. "avatarId": 10300,
  8. "description": "",
  9. "id": "10005",
  10. "name": "New Feature",
  11. "subtask": False
  12. },
  13. "status": {
  14. "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.",
  15. "id": "5",
  16. "name": "Resolved",
  17. "statusCategory": {
  18. "colorName": "green",
  19. "id": 3,
  20. "key": "done",
  21. "name": "Done",
  22. }
  23. },
  24. "summary": "Recovered data collection Defraglar $MFT problem"
  25. },
  26. "id": "11861",
  27. "key": "CAE-160",
  28. },
  29. {
  30. "fields": {
  31. ... more issues],
  32. "maxResults": 5,
  33. "startAt": 0,
  34. "total": 160
  35. }

一个不太好的解决方案

一种选择是直接撸码,写一个查找特定字段的函数,但问题是必须对每个嵌套字段调用此函数,然后再调用.applyDataFrame中的新列。

为获取我们想要的几个字段,首先我们提取fields键内的对象至列:

  1. df = (
  2. df["fields"]
  3. .apply(pd.Series)
  4. .merge(df, left_index=True, right_index = True)
  5. )

从上表看出,只有summary是可用的,issuetype、status等仍然埋在嵌套对象中。

下面是提取issuetype中的name的一种方法。

  1. # 提取issue type的name到一个新列叫"issue_type"
  2. df_issue_type = (
  3. df["issuetype"]
  4. .apply(pd.Series)
  5. .rename(columns={"name": "issue_type_name"})["issue_type_name"]
  6. )
  7. df = df.assign(issue_type_name = df_issue_type)

像上面这样,如果嵌套层级特别多,就需要自己手撸一个递归来实现了,因为每层嵌套都需要调用一个像上面解析并添加到新列的方法。

对于编程基础薄弱的朋友,手撸一个其实还挺麻烦的,尤其是对于数据分析师,着急想用数据的时候,希望可以快速拿到结构化的数据进行分析。

下面东哥分享一个pandas的内置解决方案。

内置的解决方案

pandas中有一个牛逼的内置功能叫 .json_normalize

pandas的文档中提到:将半结构化JSON数据规范化为平面表。

前面方案的所有代码,用这个内置功能仅需要3行就可搞定。步骤很简单,懂了下面几个用法即可。

确定我们要想的字段,使用 . 符号连接嵌套对象。

将想要处理的嵌套列表(这里是results["issues"])作为参数放进 .json_normalize 中。

过滤我们定义的FIELDS列表。

  1. FIELDS = ["key", "fields.summary", "fields.issuetype.name", "fields.status.name", "fields.status.statusCategory.name"]
  2. df = pd.json_normalize(results["issues"])
  3. df[FIELDS]

没错,就这么简单。

其它操作

记录路径

除了像上面那样传递results["issues"]列表之外,我们还使用record_path参数在JSON对象中指定列表的路径。

  1. # 使用路径而不是直接用results["issues"]
  2. pd.json_normalize(results, record_path="issues")[FIELDS]

自定义分隔符

还可以使用sep参数自定义嵌套结构连接的分隔符,比如下面将默认的“.”替换“-”。

  1. ### 用 "-" 替换默认的 "."
  2. FIELDS = ["key", "fields-summary", "fields-issuetype-name", "fields-status-name", "fields-status-statusCategory-name"]
  3. pd.json_normalize(results["issues"], sep = "-")[FIELDS]

控制递归

如果不想递归到每个子对象,可以使用max_level参数控制深度。在这种情况下,由于statusCategory.name字段位于JSON对象的第4级,因此不会包含在结果DataFrame中。

  1. # 只深入到嵌套第二级
  2. pd.json_normalize(results, record_path="issues", max_level = 2)

下面是.json_normalizepandas官方文档说明,如有不明白可自行学习,本次东哥就介绍到这里。

pandas官方文档:https://pandas.pydata.org/pan...

以上就是Python介绍嵌套 JSON 秒变 Dataframe!的详细内容,更多请关注gxlcms其它相关文章!

人气教程排行