时间:2021-07-01 10:21:17 帮助过:400人阅读
大量免费学习推荐,敬请访问python教程(视频)
引言
在昨天的文章中,我们介绍了如何在PyTorch中使用您自己的图像来训练图像分类器,然后使用它来进行图像识别。本文将展示如何使用预训练的分类器检测图像中的多个对象,并在视频中跟踪它们。
图像中的目标检测
目标检测的算法有很多,YOLO跟SSD是现下最流行的算法。在本文中,我们将使用YOLOv3。在这里我们不会详细讨论YOLO,如果想对它有更多了解,可以参考下面的链接哦~(https://pjreddie.com/darknet/yolo/)
下面让我们开始吧,依然从导入模块开始:
- from models import *
- from utils import *
- import os, sys, time, datetime, random
- import torch
- from torch.utils.data import DataLoader
- from torchvision import datasets, transforms
- from torch.autograd import Variable
- import matplotlib.pyplot as plt
- import matplotlib.patches as patches
- from PIL import Image
然后加载预训练的配置和权重,以及一些预定义的值,包括:图像的尺寸、置信度阈值和非最大抑制阈值。
- config_path='config/yolov3.cfg'
- weights_path='config/yolov3.weights'
- class_path='config/coco.names'
- img_size=416
- conf_thres=0.8
- nms_thres=0.4
- # Load model and weights
- model = Darknet(config_path, img_size=img_size)
- model.load_weights(weights_path)
- model.cuda()
- model.eval()
- classes = utils.load_classes(class_path)
- Tensor = torch.cuda.FloatTensor
下面的函数将返回对指定图像的检测结果。
- def detect_image(img):
- # scale and pad image
- ratio = min(img_size/img.size[0], img_size/img.size[1])
- imw = round(img.size[0] * ratio)
- imh = round(img.size[1] * ratio)
- img_transforms=transforms.Compose([transforms.Resize((imh,imw)),
- transforms.Pad((max(int((imh-imw)/2),0),
- max(int((imw-imh)/2),0), max(int((imh-imw)/2),0),
- max(int((imw-imh)/2),0)), (128,128,128)),
- transforms.ToTensor(),
- ])
- # convert image to Tensor
- image_tensor = img_transforms(img).float()
- image_tensor = image_tensor.unsqueeze_(0)
- input_img = Variable(image_tensor.type(Tensor))
- # run inference on the model and get detections
- with torch.no_grad():
- detections = model(input_img)
- detections = utils.non_max_suppression(detections, 80,
- conf_thres, nms_thres)
- return detections[0]
最后,让我们通过加载一个图像,获取检测结果,然后用检测到的对象周围的包围框来显示它。并为不同的类使用不同的颜色来区分。
- # load image and get detections
- img_path = "images/blueangels.jpg"
- prev_time = time.time()
- img = Image.open(img_path)
- detections = detect_image(img)
- inference_time = datetime.timedelta(seconds=time.time() - prev_time)
- print ('Inference Time: %s' % (inference_time))
- # Get bounding-box colors
- cmap = plt.get_cmap('tab20b')
- colors = [cmap(i) for i in np.linspace(0, 1, 20)]
- img = np.array(img)
- plt.figure()
- fig, ax = plt.subplots(1, figsize=(12,9))
- ax.imshow(img)
- pad_x = max(img.shape[0] - img.shape[1], 0) * (img_size / max(img.shape))
- pad_y = max(img.shape[1] - img.shape[0], 0) * (img_size / max(img.shape))
- unpad_h = img_size - pad_y
- unpad_w = img_size - pad_x
- if detections is not None:
- unique_labels = detections[:, -1].cpu().unique()
- n_cls_preds = len(unique_labels)
- bbox_colors = random.sample(colors, n_cls_preds)
- # browse detections and draw bounding boxes
- for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
- box_h = ((y2 - y1) / unpad_h) * img.shape[0]
- box_w = ((x2 - x1) / unpad_w) * img.shape[1]
- y1 = ((y1 - pad_y // 2) / unpad_h) * img.shape[0]
- x1 = ((x1 - pad_x // 2) / unpad_w) * img.shape[1]
- color = bbox_colors[int(np.where(
- unique_labels == int(cls_pred))[0])]
- bbox = patches.Rectangle((x1, y1), box_w, box_h,
- linewidth=2, edgecolor=color, facecolor='none')
- ax.add_patch(bbox)
- plt.text(x1, y1, s=classes[int(cls_pred)],
- color='white', verticalalignment='top',
- bbox={'color': color, 'pad': 0})
- plt.axis('off')
- # save image
- plt.savefig(img_path.replace(".jpg", "-det.jpg"),
- bbox_inches='tight', pad_inches=0.0)
- plt.show()
下面是我们的一些检测结果:
视频中的目标跟踪
现在你知道了如何在图像中检测不同的物体。当你在一个视频中一帧一帧地看时,你会看到那些跟踪框在移动。但是如果这些视频帧中有多个对象,你如何知道一个帧中的对象是否与前一个帧中的对象相同?这被称为目标跟踪,它使用多次检测来识别一个特定的对象。
有多种算法可以做到这一点,在本文中决定使用SORT(Simple Online and Realtime Tracking),它使用Kalman滤波器预测先前识别的目标的轨迹,并将其与新的检测结果进行匹配,非常方便且速度很快。
现在开始编写代码,前3个代码段将与单幅图像检测中的代码段相同,因为它们处理的是在单帧上获得 YOLO 检测。差异在最后一部分出现,对于每个检测,我们调用 Sort 对象的 Update 函数,以获得对图像中对象的引用。因此,与前面示例中的常规检测(包括边界框的坐标和类预测)不同,我们将获得跟踪的对象,除了上面的参数,还包括一个对象 ID。并且需要使用OpenCV来读取视频并显示视频帧。
- videopath = 'video/interp.mp4'
- %pylab inline
- import cv2
- from IPython.display import clear_output
- cmap = plt.get_cmap('tab20b')
- colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]
- # initialize Sort object and video capture
- from sort import *
- vid = cv2.VideoCapture(videopath)
- mot_tracker = Sort()
- #while(True):
- for ii in range(40):
- ret, frame = vid.read()
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- pilimg = Image.fromarray(frame)
- detections = detect_image(pilimg)
- img = np.array(pilimg)
- pad_x = max(img.shape[0] - img.shape[1], 0) *
- (img_size / max(img.shape))
- pad_y = max(img.shape[1] - img.shape[0], 0) *
- (img_size / max(img.shape))
- unpad_h = img_size - pad_y
- unpad_w = img_size - pad_x
- if detections is not None:
- tracked_objects = mot_tracker.update(detections.cpu())
- unique_labels = detections[:, -1].cpu().unique()
- n_cls_preds = len(unique_labels)
- for x1, y1, x2, y2, obj_id, cls_pred in tracked_objects:
- box_h = int(((y2 - y1) / unpad_h) * img.shape[0])
- box_w = int(((x2 - x1) / unpad_w) * img.shape[1])
- y1 = int(((y1 - pad_y // 2) / unpad_h) * img.shape[0])
- x1 = int(((x1 - pad_x // 2) / unpad_w) * img.shape[1])
- color = colors[int(obj_id) % len(colors)]
- color = [i * 255 for i in color]
- cls = classes[int(cls_pred)]
- cv2.rectangle(frame, (x1, y1), (x1+box_w, y1+box_h),
- color, 4)
- cv2.rectangle(frame, (x1, y1-35), (x1+len(cls)*19+60,
- y1), color, -1)
- cv2.putText(frame, cls + "-" + str(int(obj_id)),
- (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
- 1, (255,255,255), 3)
- fig=figure(figsize=(12, 8))
- title("Video Stream")
- imshow(frame)
- show()
- clear_output(wait=True)
相关免费学习推荐:php编程(视频)
以上就是详解使用PyTorch实现目标检测与跟踪的详细内容,更多请关注gxlcms其它相关文章!