当前位置:Gxlcms > Python > Python并发之PoolExecutor的介绍(附示例)

Python并发之PoolExecutor的介绍(附示例)

时间:2021-07-01 10:21:17 帮助过:7人阅读

本篇文章给大家带来的内容是关于Python并发之PoolExecutor的介绍(附示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

使用多线程(threading)和多进程(multiprocessing)完成常规的并发需求,在启动的时候 start、join 等步骤不能省,复杂的需要还要用 1-2 个队列。
随着需求越来越复杂,如果没有良好的设计和抽象这部分的功能层次,代码量越多调试的难度就越大。

对于需要并发执行、但是对实时性要求不高的任务,我们可以使用 concurrent.futures 包中的 PoolExecutor 类来实现。

这个包提供了两个执行器:线程池执行器 ThreadPoolExecutor 和进程池执行器 ProcessPoolExecutor,两个执行器提供同样的 API。

池的概念主要目的是为了重用:让线程或进程在生命周期内可以多次使用。它减少了创建创建线程和进程的开销,提高了程序性能。重用不是必须的规则,但它是程序员在应用中使用池的主要原因。

池,只有固定个数的线程/进程,通过 max_workers 指定。

任务通过 executor.submit 提交到 executor 的任务队列,返回一个 future 对象。

Future 是常见的一种并发设计模式。

一个Future对象代表了一些尚未就绪(完成)的结果,在「将来」的某个时间就绪了之后就可以获取到这个结果。

任务被调度到各个 workers 中执行。

但是要注意,一个任务一旦被执行,在执行完毕前,会一直占用该 worker!如果 workers 不够用,其他的任务会一直等待!因此 PoolExecutor 不适合实时任务。

import concurrent.futures
import time
from itertools import count

number_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def evaluate_item(x):
    for i in count(x):  # count 是无限迭代器,会一直递增。
        print(f"{x} - {i}")
        time.sleep(0.01)


if __name__ == "__main__":
        # 进程池
        start_time_2 = time.time()

        # 使用 with 在离开此代码块时,自动调用 executor.shutdown(wait=true) 释放 executor 资源
        with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
                # 将 10 个任务提交给 executor,并收集 futures
                futures = [executor.submit(evaluate_item, item) for item in number_list]

                # as_completed 方法等待 futures 中的 future 完成
                # 一旦某个 future 完成,as_completed 就立即返回该 future
                # 这个方法,使每次返回的 future,总是最先完成的 future
                # 而不是先等待任务 1,再等待任务 2...
                for future in concurrent.futures.as_completed(futures):
                        print(future.result())
        print ("Thread pool execution in " + str(time.time() - start_time_2), "seconds")

上面的代码中,item 为 1 2 3 4 5 的五个任务会一直占用所有的 workers,而 6 7 8 9 10 这五个任务会永远等待!!!

API 详细说明

concurrent.futures 包含三个部分的 API:

PoolExecutor:也就是两个执行器的 API

构造器:主要的参数是 max_workers,用于指定线程池大小(或者说 workers 个数)

submit(fn, *args, **kwargs):将任务函数 fn 提交到执行器,args 和 kwargs 就是 fn 需要的参数。

返回一个 future,用于获取结果

map(func, *iterables, timeout=None, chunksize=1):当任务是同一个,只有参数不同时,可以用这个方法代替 submit。iterables 的每个元素对应 func 的一组参数。

返回一个 futures 的迭代器

shutdown(wait=True):关闭执行器,一般都使用 with 管理器自动关闭。

Future:任务被提交给执行器后,会返回一个 future

future.result(timout=None):最常用的方法,返回任务的结果。如果任务尚未结束,这个方法会一直等待!

timeout 指定超时时间,为 None 时没有超时限制。

exception(timeout=None):给出任务抛出的异常。和 result() 一样,也会等待任务结束。

cancel():取消此任务

add_done_callback(fn):future 完成后,会执行 fn(future)。

running():是否正在运行

done():future 是否已经结束了,boolean

...详见官方文档

模块带有的实用函数

concurrent.futures.as_completed(fs, timeout=None):等待 fs (futures iterable)中的 future 完成

一旦 fs 中的某 future 完成了,这个函数就立即返回该 future。

这个方法,使每次返回的 future,总是最先完成的 future。而不是先等待任务 1,再等待任务 2...

常通过 for future in as_completed(fs): 使用此函数。

concurrent.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED):一直等待,直到 return_when 所指定的事发生,或者 timeout

return_when 有三个选项:ALL_COMPLETED(fs 中的 futures 全部完成),FIRST__COMPLETED(fs 中任意一个 future 完成)还有 FIRST_EXCEPTION(某任务抛出异常)

Future 设计模式

这里的 PoolExecutor 的特点,在于它使用了 Future 设计模式,使任务的执行,与结果的获取,变成一个异步的流程。

我们先通过 submit/map 将任务放入任务队列,这时任务就已经开始执行了!然后我们在需要的时候,通过 future 获取结果,或者直接 add_done_callback(fn)。

这里任务的执行是在新的 workers 中的,主进程/线程不会阻塞,因此主线程可以干其他的事。这种方式被称作异步编程。

画外

concurrent.futures 基于 multiprocessing.pool 实现,因此实际上它比直接使用 线程/进程 的 Pool 要慢一点。但是它提供了更方便简洁的 API。

以上就是Python并发之PoolExecutor的介绍(附示例)的详细内容,更多请关注Gxl网其它相关文章!

人气教程排行