时间:2021-07-01 10:21:17 帮助过:655人阅读
本篇文章给大家带来的内容是关于python如何实现决策树算法?(代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
数据描述
每条数据项储存在列表中,最后一列储存结果
多条数据项形成数据集
- data=[[d1,d2,d3...dn,result],
- [d1,d2,d3...dn,result],
- .
- .
- [d1,d2,d3...dn,result]]
决策树数据结构
- class DecisionNode:
- '''决策树节点
- '''
- def __init__(self,col=-1,value=None,results=None,tb=None,fb=None):
- '''初始化决策树节点
- args:
- col -- 按数据集的col列划分数据集
- value -- 以value作为划分col列的参照
- result -- 只有叶子节点有,代表最终划分出的子数据集结果统计信息。{‘结果’:结果出现次数}
- rb,fb -- 代表左右子树
- '''
- self.col=col
- self.value=value
- self.results=results
- self.tb=tb
- self.fb=fb
决策树分类的最终结果是将数据项划分出了若干子集,其中每个子集的结果都一样,所以这里采用{‘结果’:结果出现次数}的方式表达每个子集
- def pideset(rows,column,value):
- '''依据数据集rows的column列的值,判断其与参考值value的关系对数据集进行拆分
- 返回两个数据集
- '''
- split_function=None
- #value是数值类型
- if isinstance(value,int) or isinstance(value,float):
- #定义lambda函数当row[column]>=value时返回true
- split_function=lambda row:row[column]>=value
- #value是字符类型
- else:
- #定义lambda函数当row[column]==value时返回true
- split_function=lambda row:row[column]==value
- #将数据集拆分成两个
- set1=[row for row in rows if split_function(row)]
- set2=[row for row in rows if not split_function(row)]
- #返回两个数据集
- return (set1,set2)
- def uniquecounts(rows):
- '''计算数据集rows中有几种最终结果,计算结果出现次数,返回一个字典
- '''
- results={}
- for row in rows:
- r=row[len(row)-1]
- if r not in results: results[r]=0
- results[r]+=1
- return results
- def giniimpurity(rows):
- '''返回rows数据集的基尼不纯度
- '''
- total=len(rows)
- counts=uniquecounts(rows)
- imp=0
- for k1 in counts:
- p1=float(counts[k1])/total
- for k2 in counts:
- if k1==k2: continue
- p2=float(counts[k2])/total
- imp+=p1*p2
- return imp
- def entropy(rows):
- '''返回rows数据集的熵
- '''
- from math import log
- log2=lambda x:log(x)/log(2)
- results=uniquecounts(rows)
- ent=0.0
- for r in results.keys():
- p=float(results[r])/len(rows)
- ent=ent-p*log2(p)
- return ent
- def build_tree(rows,scoref=entropy):
- '''构造决策树
- '''
- if len(rows)==0: return DecisionNode()
- current_score=scoref(rows)
- # 最佳信息增益
- best_gain=0.0
- #
- best_criteria=None
- #最佳划分
- best_sets=None
- column_count=len(rows[0])-1
- #遍历数据集的列,确定分割顺序
- for col in range(0,column_count):
- column_values={}
- # 构造字典
- for row in rows:
- column_values[row[col]]=1
- for value in column_values.keys():
- (set1,set2)=pideset(rows,col,value)
- p=float(len(set1))/len(rows)
- # 计算信息增益
- gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)
- if gain>best_gain and len(set1)>0 and len(set2)>0:
- best_gain=gain
- best_criteria=(col,value)
- best_sets=(set1,set2)
- # 如果划分的两个数据集熵小于原数据集,进一步划分它们
- if best_gain>0:
- trueBranch=build_tree(best_sets[0])
- falseBranch=build_tree(best_sets[1])
- return DecisionNode(col=best_criteria[0],value=best_criteria[1],
- tb=trueBranch,fb=falseBranch)
- # 如果划分的两个数据集熵不小于原数据集,停止划分
- else:
- return DecisionNode(results=uniquecounts(rows))
- def print_tree(tree,indent=''):
- if tree.results!=None:
- print(str(tree.results))
- else:
- print(str(tree.col)+':'+str(tree.value)+'? ')
- print(indent+'T->',end='')
- print_tree(tree.tb,indent+' ')
- print(indent+'F->',end='')
- print_tree(tree.fb,indent+' ')
- def getwidth(tree):
- if tree.tb==None and tree.fb==None: return 1
- return getwidth(tree.tb)+getwidth(tree.fb)
- def getdepth(tree):
- if tree.tb==None and tree.fb==None: return 0
- return max(getdepth(tree.tb),getdepth(tree.fb))+1
- def drawtree(tree,jpeg='tree.jpg'):
- w=getwidth(tree)*100
- h=getdepth(tree)*100+120
- img=Image.new('RGB',(w,h),(255,255,255))
- draw=ImageDraw.Draw(img)
- drawnode(draw,tree,w/2,20)
- img.save(jpeg,'JPEG')
- def drawnode(draw,tree,x,y):
- if tree.results==None:
- # Get the width of each branch
- w1=getwidth(tree.fb)*100
- w2=getwidth(tree.tb)*100
- # Determine the total space required by this node
- left=x-(w1+w2)/2
- right=x+(w1+w2)/2
- # Draw the condition string
- draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0))
- # Draw links to the branches
- draw.line((x,y,left+w1/2,y+100),fill=(255,0,0))
- draw.line((x,y,right-w2/2,y+100),fill=(255,0,0))
- # Draw the branch nodes
- drawnode(draw,tree.fb,left+w1/2,y+100)
- drawnode(draw,tree.tb,right-w2/2,y+100)
- else:
- txt=' \n'.join(['%s:%d'%v for v in tree.results.items()])
- draw.text((x-20,y),txt,(0,0,0))
对测试数据进行分类(附带处理缺失数据)
- def mdclassify(observation,tree):
- '''对缺失数据进行分类
- args:
- observation -- 发生信息缺失的数据项
- tree -- 训练完成的决策树
- 返回代表该分类的结果字典
- '''
- # 判断数据是否到达叶节点
- if tree.results!=None:
- # 已经到达叶节点,返回结果result
- return tree.results
- else:
- # 对数据项的col列进行分析
- v=observation[tree.col]
- # 若col列数据缺失
- if v==None:
- #对tree的左右子树分别使用mdclassify,tr是左子树得到的结果字典,fr是右子树得到的结果字典
- tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)
- # 分别以结果占总数比例计算得到左右子树的权重
- tcount=sum(tr.values())
- fcount=sum(fr.values())
- tw=float(tcount)/(tcount+fcount)
- fw=float(fcount)/(tcount+fcount)
- result={}
- # 计算左右子树的加权平均
- for k,v in tr.items():
- result[k]=v*tw
- for k,v in fr.items():
- # fr的结果k有可能并不在tr中,在result中初始化k
- if k not in result:
- result[k]=0
- # fr的结果累加到result中
- result[k]+=v*fw
- return result
- # col列没有缺失,继续沿决策树分类
- else:
- if isinstance(v,int) or isinstance(v,float):
- if v>=tree.value: branch=tree.tb
- else: branch=tree.fb
- else:
- if v==tree.value: branch=tree.tb
- else: branch=tree.fb
- return mdclassify(observation,branch)
- tree=build_tree(my_data)
- print(mdclassify(['google',None,'yes',None],tree))
- print(mdclassify(['google','France',None,None],tree))
决策树剪枝
- def prune(tree,mingain):
- '''对决策树进行剪枝
- args:
- tree -- 决策树
- mingain -- 最小信息增益
- 返回
- '''
- # 修剪非叶节点
- if tree.tb.results==None:
- prune(tree.tb,mingain)
- if tree.fb.results==None:
- prune(tree.fb,mingain)
- #合并两个叶子节点
- if tree.tb.results!=None and tree.fb.results!=None:
- tb,fb=[],[]
- for v,c in tree.tb.results.items():
- tb+=[[v]]*c
- for v,c in tree.fb.results.items():
- fb+=[[v]]*c
- #计算熵减少情况
- delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2)
- #熵的增加量小于mingain,可以合并分支
- if delta<mingain:
- tree.tb,tree.fb=None,None
- tree.results=uniquecounts(tb+fb)
以上就是python如何实现决策树算法?(代码)的详细内容,更多请关注Gxl网其它相关文章!