时间:2021-07-01 10:21:17 帮助过:3人阅读
背景
图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入、统计邮件回复(参会还是不参会等)。如此重要的任务,老师就托付给我了。ps: 统计回复邮件的时候,能知道谁参会或谁不参会。
而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的、不参会的、没回复的)。录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本。。。
摘要
version_1 基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的bug。
version_2 相比较version_1而言,此版本用set代替list,可以自动去重。
version_3 解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。
version_4 的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,但也总是会写入两张表,万一你只想写入一张表呢??
version_5 相对之前版本的最大改进在于将程序模块化,更具可读性了; 对修复set中出现nan的方法也进行了改进和简化; 而且可以自由控制写入多少张表了。
version_final 相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。
version_1
基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的值。
- #version_1
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
- print(os.getcwd())
- data = pd.read_excel('for_python.xlsx','Sheet2')
- return_set = set(data['回执名单'])
- demand_set = set(data['理事名单'])
- answer_list = []
- unanswer_list = []
- for each in demand_set:
- if each in return_set:
- answer_list.append(each)
- else:
- unanswer_list.append(each)
- notattend_set = set(data['回执名单'][-15:])
- nt = []
- for each in notattend_set:
- if each in answer_list:
- nt.append(each)
- def disp(ll, cap, num = True):
- print(cap)
- if num:
- for i, each in enumerate(ll):
- print(i+1,each)
- else:
- for each in enumerate(ll):
- print(each)
- disp(answer_list,'\n理事回执名单')
- disp(unanswer_list,'\n理事未回执名单')
- disp(nt,'\n理事回执说不参加名单')
version_2
相比较上一个版本,此版本用set代替list,可以自动去重。
- #version_2
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
- print(os.getcwd())
- data = pd.read_excel('for_python.xlsx','Sheet2')
- return_set = set(data['回执名单'])
- demand_set = set(data['理事名单'])
- answer_set = set([]) #理事回执名单
- unanswer_set = set([]) #理事未回执名单
- for each in demand_set:
- if each in return_set:
- answer_set.add(each)
- else:
- unanswer_set.add(each)
- notattend_set = set(data['回执名单'][-17:])
- nt = set([]) #理事回执说不参加名单
- for each in notattend_set:
- if each in answer_set:
- nt.add(each)
- ans_att_set = answer_set - nt #理事回执参加名单
- def disp(ss, cap, num = False):
- print(cap)
- if num:
- for i, each in enumerate(ss):
- print(i+1,each)
- else:
- for each in ss:
- print(each)
- #disp(answer_set,'\n理事回执名单')
- disp(ans_att_set,'\n理事回执说参加名单')
- disp(nt,'\n理事回执说不参加名单')
- disp(unanswer_set,'\n理事未回执名单')
- print(len(ans_att_set),len(nt),len(unanswer_set))
version_3
此版本解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。
step_1
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop')
- print('work_directory: ', os.getcwd())
- data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
- #1.载入excel,得到三个名单
- ans_attend_set = set(data['回执参加']) #回执参会名单
- N = len(ans_attend_set)
- ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
- ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
- concil_idx = [i for i in range(N) if type(data['理事名单'][i]) == np.float][0]
- concil_set = set(data['理事名单'][:concil_idx]) #理事名单
- #2.统计理事参会情况
- concil_attend_set = set([]) #理事回执参会名单
- concil_notatt_set = set([]) #理事回执不参会名单
- concil_notans_set = set([]) #理事未回执名单
- for each in concil_set:
- if each in ans_attend_set:
- concil_attend_set.add(each)
- elif each in ans_notatt_set:
- concil_notatt_set.add(each)
- else:
- concil_notans_set.add(each)
- #3. 显示结果
- def disp(ss, cap, num = True):
- #ss: 名单集合
- #cap: 开头描述
- print(cap,'({})'.format(len(ss)))
- for i in range(np.ceil(len(ss)/5).astype(int)):
- pre = i * 5
- nex = (i+1) * 5
- #调整显示格式
- dd = ''
- for each in list(ss)[pre:nex]:
- if len(each) == 2:
- dd = dd + ' ' + each
- elif len(each) == 3:
- dd = dd + ' ' + each
- else:
- dd = dd + '' + each
- print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
- disp(concil_attend_set,'\n参会理事')
- disp(concil_notatt_set,'\n不参会理事')
- disp(concil_notans_set,'\n未回执理事')
- #4. 将理事参会情况,写入excel
- df = pd.DataFrame(list(concil_attend_set),columns = ['参会理事'])
- df['']=pd.DataFrame([''])
- df['序号1'] = pd.DataFrame(np.arange(len(concil_notatt_set))+1)
- df['不参会理事'] = pd.DataFrame(list(concil_notatt_set))
- df['_']=pd.DataFrame([''])
- df['序号2'] = pd.DataFrame(np.arange(len(concil_notans_set))+1)
- df['未回执理事'] = pd.DataFrame(list(concil_notans_set))
- df.index = df.index + 1
- df.to_excel('理事和会员回执统计.xlsx', sheet_name='理事回执统计')
- print('\n\n写入excel成功~~')
step_2
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop')
- print('work_directory: ', os.getcwd())
- data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
- #1.载入excel,得到三个名单
- ans_attend_set = set(data['回执参加']) #回执参会名单
- N = len(ans_attend_set)
- ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
- ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
- mem_idx = [i for i in range(N) if type(data['被推荐人'][i]) == np.float][0]
- mem_set = set(data['被推荐人'][:mem_idx]) #被推荐为会员代表名单
- #2.统计会员参会情况
- mem_attend_set = set([]) #回执参会会员
- mem_notatt_set = set([]) #回执不参会会员
- mem_notans_set = set([]) #未回执会员
- for each in mem_set:
- if each in ans_attend_set:
- mem_attend_set.add(each)
- elif each in ans_notatt_set:
- mem_notatt_set.add(each)
- else:
- mem_notans_set.add(each)
- #3. 显示结果
- def disp(ss, cap, num = True):
- #ss: 名单集合
- #cap: 开头描述
- print(cap,'({})'.format(len(ss)))
- for i in range(np.ceil(len(ss)/5).astype(int)):
- pre = i * 5
- nex = (i+1) * 5
- #调整显示格式
- dd = ''
- for each in list(ss)[pre:nex]:
- if len(each) == 2:
- dd = dd + ' ' + each
- elif len(each) == 3:
- dd = dd + ' ' + each
- else:
- dd = dd + '' + each
- print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
- disp(mem_attend_set,'\n参会会员')
- disp(mem_notatt_set,'\n不参会会员')
- disp(mem_notans_set,'\n未回执会员')
- #4. 将会员参会情况,写入excel
- if len(mem_attend_set) > len(mem_notans_set):
- print('#1')
- L = len(mem_attend_set)
- mem_notans_list = list(mem_notans_set)
- mem_notans_list.extend([''] * (L - len(mem_notans_set)))
- mem_attend_list = list(mem_attend_set)
- else:
- print('#2')
- L = len(mem_notans_set)
- mem_attend_list = list(mem_attend_set)
- mem_attend_list.extend([''] * (L - len(mem_attend_set)))
- mem_notans_list = list(mem_notans_set)
- df = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
- df['']=pd.DataFrame([''])
- if len(mem_notatt_set) == 0:
- df['序号1'] = np.NaN
- df['不参会会员'] = np.NaN
- else:
- df['序号1'] = pd.DataFrame(np.arange(len(mem_notatt_set))+1)
- df['不参会会员'] = pd.DataFrame(list(mem_notatt_set))
- df['_']=pd.DataFrame([''])
- df['序号2'] = pd.DataFrame(np.arange(len(mem_notans_set))+1)
- df['未回执会员'] = pd.DataFrame(mem_notans_list)
- df.index = df.index + 1
- df0 = pd.read_excel('理事和会员回执统计.xlsx',sheet_name='理事回执统计')
- writer = pd.ExcelWriter('理事和会员回执统计.xlsx')
- df0.to_excel(writer, sheet_name='理事回执统计')
- df.to_excel(writer, sheet_name='会员回执统计')
- writer.save()
- print('\n\n写入excel成功~~')
version_4
version_4的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,也总是会写入两张表。问题是要是你只想写入一张表呢??
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop')
- print('work_directory: ', os.getcwd())
- loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
- columns = ['回执参加','回执不参加','理事','会员']
- savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
- display = [1,1]
- def main(loadfile_sheet,columns,savefile_sheet,display):
- #1. 载入excel,得到名单
- data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
- def first_nan_index(pd):
- for i, each in enumerate(pd):
- if type(each) == np.float:
- return i
- return i
- idx = first_nan_index(data[columns[0]])
- ans_attend_set = set(data[columns[0]][:idx])#回执参会名单
- idx = first_nan_index(data[columns[1]])
- ans_notatt_set = set(data[columns[1]][:idx])#回执不参会名单
- idx = first_nan_index(data[columns[2]])
- concil_set = set(data[columns[2]][:idx])#理事名单
- idx = first_nan_index(data[columns[3]])
- mem_set = set(data[columns[3]][:idx])#会员名单
- #2. 统计参会情况
- concil_attend_set = set([]) #回执参会理事
- concil_notatt_set = set([]) #回执不参会理事
- concil_notans_set = set([]) #未回执理事
- for each in concil_set:
- if each in ans_attend_set:
- concil_attend_set.add(each)
- elif each in ans_notatt_set:
- concil_notatt_set.add(each)
- else:
- concil_notans_set.add(each)
- mem_attend_set = set([]) #回执参会会员
- mem_notatt_set = set([]) #回执不参会会员
- mem_notans_set = set([]) #未回执会员
- for each in mem_set:
- if each in ans_attend_set:
- mem_attend_set.add(each)
- elif each in ans_notatt_set:
- mem_notatt_set.add(each)
- else:
- mem_notans_set.add(each)
- #3. 是否显示中间结果
- def disp(ss, cap, num = True):
- #ss: 名单集合
- #cap: 开头描述
- print(cap,'({})'.format(len(ss)))
- for i in range(np.ceil(len(ss)/5).astype(int)):
- pre = i * 5
- nex = (i+1) * 5
- #调整显示格式
- dd = ''
- for each in list(ss)[pre:nex]:
- if len(each) == 2:
- dd = dd + ' ' + each
- elif len(each) == 3:
- dd = dd + ' ' + each
- else:
- dd = dd + '' + each
- print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
- if display[0]:
- disp(concil_attend_set,'\n参会理事')
- disp(concil_notatt_set,'\n不参会理事')
- disp(concil_notans_set,'\n未回执理事')
- if display[1]:
- disp(mem_attend_set,'\n参会会员')
- disp(mem_notatt_set,'\n不参会会员')
- disp(mem_notans_set,'\n未回执会员')
- #4. 写入excel
- def trans_pd(df,ss,cap,i=1):
- if len(ss) == 0:
- df['序号{}'.format(i)] = np.NaN
- df[cap] = np.NaN
- else:
- df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
- df[cap] = pd.DataFrame(list(ss))
- df['_'*i]=pd.DataFrame([''])
- return df
- def set2list(mem_attend_set,mem_notans_set):
- if len(mem_attend_set) > len(mem_notans_set):
- L = len(mem_attend_set)
- mem_notans_list = list(mem_notans_set)
- mem_notans_list.extend([''] * (L - len(mem_notans_set)))
- mem_attend_list = list(mem_attend_set)
- else:
- L = len(mem_notans_set)
- mem_attend_list = list(mem_attend_set)
- mem_attend_list.extend([''] * (L - len(mem_attend_set)))
- mem_notans_list = list(mem_notans_set)
- return mem_attend_list,mem_notans_list
- mem_attend_list, mem_notans_list = set2list(mem_attend_set, mem_notans_set)
- df1 = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
- df1['']=pd.DataFrame([''])
- df1 = trans_pd(df1,mem_notatt_set,'不参会会员')
- df1 = trans_pd(df1,mem_notans_set,'未回执会员',2)
- df1.index = df1.index + 1
- concil_attend_list, concil_notans_list = set2list(concil_attend_set, concil_notans_set)
- df2 = pd.DataFrame(concil_attend_list,columns = ['参会理事'])
- df2['']=pd.DataFrame([''])
- df2 = trans_pd(df2,concil_notatt_set,'不参会理事')
- df2 = trans_pd(df2,concil_notans_list,'未回执理事',2)
- df2.index = df2.index + 1
- writer = pd.ExcelWriter(savefile_sheet[0])
- df2.to_excel(writer, sheet_name=savefile_sheet[1])
- df1.to_excel(writer, sheet_name=savefile_sheet[2])
- writer.save()
- print('\n\n写入excel成功~~')
- if __name__ == '__main__':
- main(loadfile_sheet,columns,savefile_sheet,display)
version_5
version_5对修复set中出现nan的方法进行了改进和简化; 而且将程序模块化,更具可读性; 可以自由控制写入多少张表了。
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop')
- print('work_directory: ', os.getcwd())
- loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
- common_columns = ['回执参加','回执不参加']
- concerned_columns = ['理事','会员']
- disp_columns = ['参会','不参会','未回执']
- savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
- def disp(ss, cap, num = True):
- #ss: 名单集合
- #cap: 开头描述
- print(cap,'({})'.format(len(ss)))
- for i in range(np.ceil(len(ss)/5).astype(int)):
- pre = i * 5
- nex = (i+1) * 5
- #调整显示格式
- dd = ''
- for each in list(ss)[pre:nex]:
- if len(each) == 2:
- dd = dd + ' ' + each
- elif len(each) == 3:
- dd = dd + ' ' + each
- else:
- dd = dd + '' + each
- print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
- def trans_pd(df,ss,cap,i=1):
- df['_'*i]=pd.DataFrame([''])
- if len(ss) == 0:
- df['序号{}'.format(i)] = np.NaN
- df[cap] = np.NaN
- else:
- df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
- df[cap] = pd.DataFrame(list(ss))
- return df
- def set2list(ss1,ss2):
- if len(ss1) > len(ss2):
- L = len(ss1)
- ss2_list = list(ss2)
- ss2_list.extend([''] * (L - len(ss2)))
- ss1_list = list(ss1)
- else:
- L = len(ss2)
- ss1_list = list(ss1)
- ss1_list.extend([''] * (L - len(ss1)))
- ss2_list = list(ss2)
- return ss1_list,ss2_list
- def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
- #1. 载入excel
- data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
- common_set1 = set(data[common_columns[0]])
- common_set1.discard(np.NaN)
- common_set2 = set(data[common_columns[1]])
- common_set2.discard(np.NaN)
- concerned_set = set(data[concerned_column])
- concerned_set.discard(np.NaN)
- #2. 统计
- concerned_in_set_1 = set([])
- concerned_in_set_2 = set([])
- concerned_in_no_set = set([])
- for each in concerned_set:
- if each in common_set1:
- concerned_in_set_1.add(each)
- elif each in common_set2:
- concerned_in_set_2.add(each)
- else:
- concerned_in_no_set.add(each)
- #3. 显示
- if display:
- disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
- disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
- disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
- #4. 返回DataFrame
- concerned_in_set_1_list, concerned_in_set_2_list = set2list(concerned_in_set_1, concerned_in_no_set)
- df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
- df = trans_pd(df,concerned_in_set_2,disp_columns[1])
- df = trans_pd(df,concerned_in_no_set,disp_columns[2],2)
- df.index = df.index + 1
- return df
- def save2excel(df, concerned_column, savefile_sheet):
- L = len(savefile_sheet) - 1
- idx = 0
- for i in np.arange(L)+1:
- if concerned_column in savefile_sheet[i]:
- idx = i
- break
- if idx != 0:
- names = locals()
- for i in np.arange(L)+1:
- if i != idx:
- names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
- writer = pd.ExcelWriter(savefile_sheet[0])
- for i in np.arange(L)+1:
- if i != idx:
- names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
- else:
- df.to_excel(writer, sheet_name=savefile_sheet[i])
- writer.save()
- else:
- names = locals()
- for i in np.arange(L)+1:
- names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
- writer = pd.ExcelWriter(savefile_sheet[0])
- for i in np.arange(L)+1:
- names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
- df.to_excel(writer, sheet_name=concerned_column)
- writer.save()
- print('writing success')
- if __name__ == '__main__':
- for concerned_column in concerned_columns:
- df = get_df(loadfile_sheet,common_columns,
- concerned_column,disp_columns, display = True)
- save2excel(df, concerned_column, savefile_sheet)
version_final
相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。
- import os
- import numpy as np
- import pandas as pd
- os.chdir('C:\\Users\\dell\\Desktop')
- print('work_directory: ', os.getcwd())
- loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
- common_columns = ['回执参加','回执不参加']
- concerned_columns = ['理事','会员']
- disp_columns = ['参会','不参会','未回执']
- savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
- def disp(ss, cap, num = True):
- #功能:显示名单
- #ss : 名单集合
- #cap :开头描述
- print(cap,'({})'.format(len(ss)))
- for i in range(np.ceil(len(ss)/5).astype(int)):
- pre = i * 5
- nex = (i+1) * 5
- #调整显示格式
- dd = ''
- for each in list(ss)[pre:nex]:
- if len(each) == 2:
- dd = dd + ' ' + each
- elif len(each) == 3:
- dd = dd + ' ' + each
- else:
- dd = dd + '' + each
- print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
- def trans_pd(df,ll,cap,i=1):
- #功能:生成三列--空列、序号列、数据列
- #df : DataFrame结构
- #ll : 列表
- #cap : 显示的列名
- #i : 控制空列的名字
- df['_'*i]=pd.DataFrame([''])
- if len(set(ll)) == 1:
- df['序号{}'.format(i)] = np.NaN
- df[cap] = np.NaN
- else:
- df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(set(ll))-1)+1)
- df[cap] = pd.DataFrame(ll)
- return df
- def prep(ss, N):
- #功能:预处理,生成列表,并补齐到长度N
- #ss : 集体
- #N :长度
- ll = list(ss)
- L = len(ll)
- ll.extend([np.NaN] * (N-L))
- return ll
- def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
- #1. 载入excel
- data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
- common_set1 = set(data[common_columns[0]])
- common_set2 = set(data[common_columns[1]])
- concerned_set = set(data[concerned_column])
- common_set1.discard(np.NaN)
- common_set2.discard(np.NaN)
- concerned_set.discard(np.NaN)
- #2. 统计
- concerned_in_set_1 = set([])
- concerned_in_set_2 = set([])
- concerned_in_no_set = set([])
- for each in concerned_set:
- if each in common_set1:
- concerned_in_set_1.add(each)
- elif each in common_set2:
- concerned_in_set_2.add(each)
- else:
- concerned_in_no_set.add(each)
- #3. 显示
- if display:
- disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
- disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
- disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
- #4. 返回DataFrame
- N = np.max([len(concerned_in_set_1),len(concerned_in_set_2),len(concerned_in_no_set)])
- concerned_in_set_1_list = prep(concerned_in_set_1,N)
- concerned_in_set_2_list = prep(concerned_in_set_2,N)
- concerned_in_no_list = prep(concerned_in_no_set,N)
- df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
- df = trans_pd(df,concerned_in_set_2_list,disp_columns[1])
- df = trans_pd(df,concerned_in_no_list,disp_columns[2],2)
- df.index = df.index + 1
- return df
- def save2excel(df, concerned_column, savefile_sheet):
- L = len(savefile_sheet) - 1
- idx = 0
- for i in np.arange(L)+1:
- if concerned_column in savefile_sheet[i]:
- idx = i
- break
- if idx != 0: #如果有对应sheet
- names = locals()
- for i in np.arange(L)+1:
- if i != idx:
- names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
- writer = pd.ExcelWriter(savefile_sheet[0])
- for i in np.arange(L)+1:
- if i != idx:
- names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
- else:
- df.to_excel(writer, sheet_name=savefile_sheet[i])
- writer.save()
- else: #如果没有对应sheet,创建一个新sheet
- names = locals()
- for i in np.arange(L)+1:
- names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
- writer = pd.ExcelWriter(savefile_sheet[0])
- for i in np.arange(L)+1:
- names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
- df.to_excel(writer, sheet_name=concerned_column)
- writer.save()
- print('writing success')
- if __name__ == '__main__':
- for concerned_column in concerned_columns:
- df = get_df(loadfile_sheet,common_columns,
- concerned_column,disp_columns, display = True)
- save2excel(df, concerned_column, savefile_sheet)
相关推荐:
python 实现在Excel末尾增加新行
以上就是python实战之实现excel读取、统计、写入的示例讲解的详细内容,更多请关注Gxl网其它相关文章!