时间:2021-07-01 10:21:17 帮助过:61人阅读
也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。
lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率)。这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率A的损失函数实现。
对于lasso回归算法,在损失函数上增加一项:斜率A的某个给定倍数。我们使用TensorFlow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩大。一会就可以看到如何使用lasso回归算法。
对于岭回归算法,增加一个L2范数,即斜率系数的L2正则。
- # LASSO and Ridge Regression
- # lasso回归和岭回归
- #
- # This function shows how to use TensorFlow to solve LASSO or
- # Ridge regression for
- # y = Ax + b
- #
- # We will use the iris data, specifically:
- # y = Sepal Length
- # x = Petal Width
- # import required libraries
- import matplotlib.pyplot as plt
- import sys
- import numpy as np
- import tensorflow as tf
- from sklearn import datasets
- from tensorflow.python.framework import ops
- # Specify 'Ridge' or 'LASSO'
- regression_type = 'LASSO'
- # clear out old graph
- ops.reset_default_graph()
- # Create graph
- sess = tf.Session()
- ###
- # Load iris data
- ###
- # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
- iris = datasets.load_iris()
- x_vals = np.array([x[3] for x in iris.data])
- y_vals = np.array([y[0] for y in iris.data])
- ###
- # Model Parameters
- ###
- # Declare batch size
- batch_size = 50
- # Initialize placeholders
- x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
- y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
- # make results reproducible
- seed = 13
- np.random.seed(seed)
- tf.set_random_seed(seed)
- # Create variables for linear regression
- A = tf.Variable(tf.random_normal(shape=[1,1]))
- b = tf.Variable(tf.random_normal(shape=[1,1]))
- # Declare model operations
- model_output = tf.add(tf.matmul(x_data, A), b)
- ###
- # Loss Functions
- ###
- # Select appropriate loss function based on regression type
- if regression_type == 'LASSO':
- # Declare Lasso loss function
- # 增加损失函数,其为改良过的连续阶跃函数,lasso回归的截止点设为0.9。
- # 这意味着限制斜率系数不超过0.9
- # Lasso Loss = L2_Loss + heavyside_step,
- # Where heavyside_step ~ 0 if A < constant, otherwise ~ 99
- lasso_param = tf.constant(0.9)
- heavyside_step = tf.truep(1., tf.add(1., tf.exp(tf.multiply(-50., tf.subtract(A, lasso_param)))))
- regularization_param = tf.multiply(heavyside_step, 99.)
- loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param)
- elif regression_type == 'Ridge':
- # Declare the Ridge loss function
- # Ridge loss = L2_loss + L2 norm of slope
- ridge_param = tf.constant(1.)
- ridge_loss = tf.reduce_mean(tf.square(A))
- loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0)
- else:
- print('Invalid regression_type parameter value',file=sys.stderr)
- ###
- # Optimizer
- ###
- # Declare optimizer
- my_opt = tf.train.GradientDescentOptimizer(0.001)
- train_step = my_opt.minimize(loss)
- ###
- # Run regression
- ###
- # Initialize variables
- init = tf.global_variables_initializer()
- sess.run(init)
- # Training loop
- loss_vec = []
- for i in range(1500):
- rand_index = np.random.choice(len(x_vals), size=batch_size)
- rand_x = np.transpose([x_vals[rand_index]])
- rand_y = np.transpose([y_vals[rand_index]])
- sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
- temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
- loss_vec.append(temp_loss[0])
- if (i+1)%300==0:
- print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
- print('Loss = ' + str(temp_loss))
- print('\n')
- ###
- # Extract regression results
- ###
- # Get the optimal coefficients
- [slope] = sess.run(A)
- [y_intercept] = sess.run(b)
- # Get best fit line
- best_fit = []
- for i in x_vals:
- best_fit.append(slope*i+y_intercept)
- ###
- # Plot results
- ###
- # Plot regression line against data points
- plt.plot(x_vals, y_vals, 'o', label='Data Points')
- plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
- plt.legend(loc='upper left')
- plt.title('Sepal Length vs Pedal Width')
- plt.xlabel('Pedal Width')
- plt.ylabel('Sepal Length')
- plt.show()
- # Plot loss over time
- plt.plot(loss_vec, 'k-')
- plt.title(regression_type + ' Loss per Generation')
- plt.xlabel('Generation')
- plt.ylabel('Loss')
- plt.show()
输出结果:
Step #300 A = [[ 0.77170753]] b = [[ 1.82499862]]
Loss = [[ 10.26473045]]
Step #600 A = [[ 0.75908542]] b = [[ 3.2220633]]
Loss = [[ 3.06292033]]
Step #900 A = [[ 0.74843585]] b = [[ 3.9975822]]
Loss = [[ 1.23220456]]
Step #1200 A = [[ 0.73752165]] b = [[ 4.42974091]]
Loss = [[ 0.57872057]]
Step #1500 A = [[ 0.72942668]] b = [[ 4.67253113]]
Loss = [[ 0.40874988]]
通过在标准线性回归估计的基础上,增加一个连续的阶跃函数,实现lasso回归算法。由于阶跃函数的坡度,我们需要注意步长,因为太大的步长会导致最终不收敛。
相关推荐:
用TensorFlow实现戴明回归算法的示例
以上就是用TensorFlow实现lasso回归和岭回归算法的示例的详细内容,更多请关注Gxl网其它相关文章!