时间:2021-07-01 10:21:17 帮助过:49人阅读
本文将实现逻辑回归算法,预测低出生体重的概率。
- # Logistic Regression
- # 逻辑回归
- #----------------------------------
- #
- # This function shows how to use TensorFlow to
- # solve logistic regression.
- # y = sigmoid(Ax + b)
- #
- # We will use the low birth weight data, specifically:
- # y = 0 or 1 = low birth weight
- # x = demographic and medical history data
- import matplotlib.pyplot as plt
- import numpy as np
- import tensorflow as tf
- import requests
- from tensorflow.python.framework import ops
- import os.path
- import csv
- ops.reset_default_graph()
- # Create graph
- sess = tf.Session()
- ###
- # Obtain and prepare data for modeling
- ###
- # name of data file
- birth_weight_file = 'birth_weight.csv'
- # download data and create data file if file does not exist in current directory
- if not os.path.exists(birth_weight_file):
- birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
- birth_file = requests.get(birthdata_url)
- birth_data = birth_file.text.split('\r\n')
- birth_header = birth_data[0].split('\t')
- birth_data = [[float(x) for x in y.split('\t') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
- with open(birth_weight_file, "w") as f:
- writer = csv.writer(f)
- writer.writerow(birth_header)
- writer.writerows(birth_data)
- f.close()
- # read birth weight data into memory
- birth_data = []
- with open(birth_weight_file, newline='') as csvfile:
- csv_reader = csv.reader(csvfile)
- birth_header = next(csv_reader)
- for row in csv_reader:
- birth_data.append(row)
- birth_data = [[float(x) for x in row] for row in birth_data]
- # Pull out target variable
- y_vals = np.array([x[0] for x in birth_data])
- # Pull out predictor variables (not id, not target, and not birthweight)
- x_vals = np.array([x[1:8] for x in birth_data])
- # set for reproducible results
- seed = 99
- np.random.seed(seed)
- tf.set_random_seed(seed)
- # Split data into train/test = 80%/20%
- # 分割数据集为测试集和训练集
- train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
- test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
- x_vals_train = x_vals[train_indices]
- x_vals_test = x_vals[test_indices]
- y_vals_train = y_vals[train_indices]
- y_vals_test = y_vals[test_indices]
- # Normalize by column (min-max norm)
- # 将所有特征缩放到0和1区间(min-max缩放),逻辑回归收敛的效果更好
- # 归一化特征
- def normalize_cols(m):
- col_max = m.max(axis=0)
- col_min = m.min(axis=0)
- return (m-col_min) / (col_max - col_min)
- x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
- x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))
- ###
- # Define Tensorflow computational graph¶
- ###
- # Declare batch size
- batch_size = 25
- # Initialize placeholders
- x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
- y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
- # Create variables for linear regression
- A = tf.Variable(tf.random_normal(shape=[7,1]))
- b = tf.Variable(tf.random_normal(shape=[1,1]))
- # Declare model operations
- model_output = tf.add(tf.matmul(x_data, A), b)
- # Declare loss function (Cross Entropy loss)
- loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
- # Declare optimizer
- my_opt = tf.train.GradientDescentOptimizer(0.01)
- train_step = my_opt.minimize(loss)
- ###
- # Train model
- ###
- # Initialize variables
- init = tf.global_variables_initializer()
- sess.run(init)
- # Actual Prediction
- # 除记录损失函数外,也需要记录分类器在训练集和测试集上的准确度。
- # 所以创建一个返回准确度的预测函数
- prediction = tf.round(tf.sigmoid(model_output))
- predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
- accuracy = tf.reduce_mean(predictions_correct)
- # Training loop
- # 开始遍历迭代训练,记录损失值和准确度
- loss_vec = []
- train_acc = []
- test_acc = []
- for i in range(1500):
- rand_index = np.random.choice(len(x_vals_train), size=batch_size)
- rand_x = x_vals_train[rand_index]
- rand_y = np.transpose([y_vals_train[rand_index]])
- sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
- temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
- loss_vec.append(temp_loss)
- temp_acc_train = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})
- train_acc.append(temp_acc_train)
- temp_acc_test = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
- test_acc.append(temp_acc_test)
- if (i+1)%300==0:
- print('Loss = ' + str(temp_loss))
- ###
- # Display model performance
- ###
- # 绘制损失和准确度
- plt.plot(loss_vec, 'k-')
- plt.title('Cross Entropy Loss per Generation')
- plt.xlabel('Generation')
- plt.ylabel('Cross Entropy Loss')
- plt.show()
- # Plot train and test accuracy
- plt.plot(train_acc, 'k-', label='Train Set Accuracy')
- plt.plot(test_acc, 'r--', label='Test Set Accuracy')
- plt.title('Train and Test Accuracy')
- plt.xlabel('Generation')
- plt.ylabel('Accuracy')
- plt.legend(loc='lower right')
- plt.show()
数据结果:
Loss = 0.845124
Loss = 0.658061
Loss = 0.471852
Loss = 0.643469
Loss = 0.672077
迭代1500次的交叉熵损失图
迭代1500次的测试集和训练集的准确度图
相关推荐:
用TensorFlow实现lasso回归和岭回归算法的示例
用TensorFlow实现戴明回归算法的示例
以上就是详解用TensorFlow实现逻辑回归算法的详细内容,更多请关注Gxl网其它相关文章!