当前位置:Gxlcms > Python > 深入分析python数据挖掘Json结构分析

深入分析python数据挖掘Json结构分析

时间:2021-07-01 10:21:17 帮助过:27人阅读

这篇文章通过实例给大家分析总结了python数据挖掘以及Json结构分析的相关知识点,对此有兴趣的朋友参考下。

json是一种轻量级的数据交换格式,也可以说是一种配置文件的格式

这种格式的文件是我们在数据处理经常会遇到的

python提供内置的模块json,只需要在使用前导入即可

你可以通过帮助函数查看json的帮助文档

json常用的方法有load、loads、dump以及dumps,这个都属于python初级,我不做过多解释

json可以结合数据库一起使用,在这以后要处理大量数据时非常有用

下面我们正式来利用数据挖掘对json文件进行处理

现在很多网站都运用了Ajax,所以一般很多都是XHR文件

通过这里我想利用一个地图网站来演示

我们通过浏览器的调试获取了相关url

https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ

下面我们通过requests模块中的get方法,模拟浏览器发出的http请求,并返回的到的结果对象

代码如下

# coding=utf-8
__Author__ = "susmote"

import requests
url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ"

resp = requests.get(url)
print(resp.text[0:200])

在终端中运行结果如下

数据已经获取到了,但是为了接下来能使用这些数据,我们需要利用json模块对这些数据进行分析

代码如下

import requests
import json

url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ"

resp = requests.get(url)

json_dict = json.loads(resp.text)

print(type(json_dict))

print(json_dict.keys())

简单讲一下上面的代码:

导入json模块,然后调用loads方法,将返回的文本作为方法的参数传入

在终端中运行结果如下

可以看出,转换的结果是与json字符串对应的字典,因为type(json_dict)返回的是<class 'dict'>

因为对象是一个字典,所以我们可以调用字典的方法,在这里我们调用的就是keys方法

结果返回三个键,即status、searcOpt、data

下面我们来查看data键里面的数据

import requests
import json

url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ"

resp = requests.get(url)

json_dict = json.loads(resp.text)

print(json_dict['data'])

下面在终端中运行这一段代码

可以看到里面有很多我们需要的数据,如

不一一标出,通过跟网页显示的相比较,就能清楚哪些是有用的了

下面我们通过代码获取有用的信息,把它清晰的输出

# coding=utf-8
__Author__ = "susmote"

import requests
import json

url = "https://ditu.amap.com/service/poiInfo?id=B001B0IZY1&query_type=IDQ"

resp = requests.get(url)

json_dict = json.loads(resp.text)

data_dict = json_dict['data']

data_list = data_dict['poi_list']

dis_data = data_list[0]

print('城市: ', dis_data['cityname'])
print('名称: ', dis_data['name'])
print('电话: ', dis_data['tel'])
print('区号: ', dis_data['areacode'])
print('地址: ', dis_data['address'])
print('经度: ', dis_data['longitude'])
print('纬度: ', dis_data['latitude'])


因为返回的是一个字典,通过对文件结构的研究,字典中嵌套着列表,列表中又嵌套着字典,通过层层解套,成功获取数据

我这里把步骤分开列出了,所以你会看的更加清楚

下面我们通过终端运行程序,获取我们想要的信息

是不是非常简单了,这个程序可以作为一个模版,获取其他地方的信息时只需要改一个url即可

例如以下几个范例

北京大学

或者是腾讯大厦

数据挖掘是没有尽头的,希望大家多分析数据,找到你想要的数据

相关推荐:

Python数据怎么处理numpy.median

以上就是深入分析python数据挖掘 Json结构分析的详细内容,更多请关注Gxl网其它相关文章!

人气教程排行